antibodies .- online.com

anti-Influenza Nucleoprotein antibody (Influenza A Virus (A/Russia:St.Petersburg/8/2006)) (AA 71-170)

Go to Product page

1 Publication

Overview	
Quantity:	100 μL
Target:	Influenza Nucleoprotein (NP)
Binding Specificity:	AA 71-170
Reactivity:	Influenza A Virus, Virus
Virus Strain:	A/Russia:St.Petersburg/8/2006
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	Un-conjugated
Application:	Western Blotting (WB), Immunohistochemistry (Frozen Sections) (IHC (fro)), Immunohistochemistry (Paraffin-embedded Sections) (IHC (p))

Product Details

Immunogen:	KLH conjugated synthetic peptide derived from Influenza A virus (strain A/Russia:St.Petersburg/8/2006 H1N1) Nucleoprotein
Isotype:	IgG
Cross-Reactivity:	Virus
Cross-Reactivity (Details):	Influenza A virus
Purification:	Purified by Protein A.

Target Details

rarget Details	
Target:	Influenza Nucleoprotein (NP)
Alternative Name:	Influenza A virus Nucleoprotein (NP Products)
Target Type:	Influenza Protein
Background:	Synonyms: Nucleoprotein, NP, Nucleocapsid protein, Protein N, Influenza A virus H1N1, H3N2
	Nucleoprotein, H9N2 Nucleoprotein, H2N2 Nucleoprotein, H3N8 Nucleoprotein, H7N7
	Nucleoprotein, H5N1 Nucleoprotein.
	Background: Encapsidates the negative strand viral RNA, protecting it from nucleases. The
	encapsidated genomic RNA is termed the ribonucleoprotein (RNP) and serves as template for
	transcription and replication. The RNP needs to be localized in the nucleus to start an infectious
	cycle, but is too large to diffuse through the nuclear pore complex. NP comprises at least 2
	nuclear localization signals and is responsible of the active RNP import into the nucleus
	through the cellular importin alpha/beta pathway. Later in the infection, nucleus export of RNP
	are mediated through viral proteins NEP interacting with M1 which binds nucleoproteins. It is
	possible that the nucleoprotein binds directly exportin-1 (XPO1) and plays an active role in RNP
	nuclear export. M1 interaction with RNP seems to hide nucleoprotein's nuclear localization
	signals. Soon after a virion infects a new cell, M1 dissociates from the RNP under acidification
	of the virion driven by M2 protein. Dissociation of M1 from RNP unmask nucleoprotein's nuclear
	localization signals, targeting the RNP to the nucleus.

Application Details

Application Notes:	WB 1:300-5000
	ELISA 1:500-1000
	IHC-P 1:200-400
	IHC-F 1:100-500
	IF(IHC-P) 1:50-200
	IF(IHC-F) 1:50-200
	IF(ICC) 1:50-200
	ICC 1:100-500
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Concentration:	1 μg/μL

Handling

Buffer:	0.01M TBS(pH 7.4) with 1 % BSA, 0.02 % Proclin300 and 50 % Glycerol.
Preservative:	ProClin
Precaution of Use:	This product contains ProClin: a POISONOUS AND HAZARDOUS SUBSTANCE, which should be handled by trained staff only.
Storage:	4 °C,-20 °C
Storage Comment:	Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.
Expiry Date:	12 months
Publications	
Product cited in:	Chen, Angel, Li, Finch, Gonzalez, Sutton, Santos, Perez: "All-in-one bacmids: an efficient reverse genetics strategy for influenza A virus vaccines." in: Journal of virology , Vol. 88, Issue 17, pp.

10013-25, (2014) (PubMed).