antibodies -online.com

anti-ABCG5 antibody (AA 306-367)

5 Images

2

Publications

Go to Product page

Overview

Quantity:	100 μL
Target:	ABCG5
Binding Specificity:	AA 306-367
Reactivity:	Human
Host:	Mouse
Clonality:	Monoclonal
Conjugate:	This ABCG5 antibody is un-conjugated
Application:	Western Blotting (WB), ELISA, Flow Cytometry (FACS)

Product Details

Immunogen:	Purified recombinant fragment of human ABCG5 (AA: 306-367) expressed in E. Coli.
Clone:	1B5D8
Isotype:	lgG1

Target Details

Target:	ABCG5
Alternative Name:	ABCG5 (ABCG5 Products)
Background:	The protein encoded by this gene is a member of the superfamily of ATP-binding cassette
	(ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular
	membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP,
	ALD, OABP, GCN20, White). This protein is a member of the White subfamily. The protein

Target Details

encoded by this gene functions as a half-transporter to limit intestinal absorption and promote
biliary excretion of sterols. It is expressed in a tissue-specific manner in the liver, colon, and
intestine. This gene is tandemly arrayed on chromosome 2, in a head-to-head orientation with
family member ABCG8. Mutations in this gene may contribute to sterol accumulation and
atheroschlerosis, and have been observed in patients with sitosterolemia.

Molecular Weight:	72.5 kDa
Gene ID:	64240
HGNC:	64240

Pathways: Lipid Metabolism

Application Details

Application Notes: Recommended Dilution:

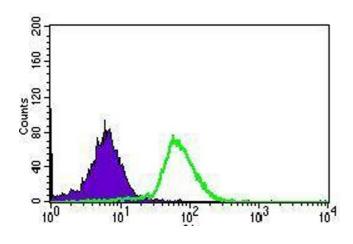
ELISA: 1/10000

WB: 1/500 - 1/2000 FCM: 1/200 - 1/400

Restrictions: For Research Use only

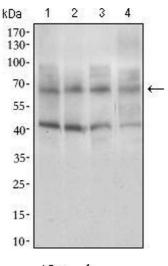
Handling

Format:	Liquid
Buffer:	Ascitic fluid containing 0.03 % sodium azide.
Preservative:	Sodium azide
Precaution of Use:	This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	4 °C/-20 °C
Storage Comment:	Store at 4 °C or at -20 °C for long term.


Publications

Product cited in:

Li, Yin, Wei, Yan, Aung, Wu, Wu, Lin, Liu, Pan: "ATP-binding cassette transporter G5 and G8 polymorphisms and several environmental factors with serum lipid levels." in: **PLoS ONE**, Vol. 7, Issue 5, pp. e37972, (2012) (PubMed).


Jakulj, Vissers, Tanck, Hutten, Stellaard, Kastelein, Dallinga-Thie: "ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis." in: **Journal of lipid research**, Vol. 51, Issue 10, pp. 3016-23, (2010) (PubMed).

Images

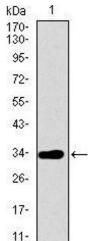

Flow Cytometry

Image 1. Flow cytometric analysis of HepG2 cells using ABCG5 mouse mAb (green) and negative control (purple).

Western Blotting

Image 2. Western blot analysis using ABCG5 mouse mAb against HepG2 (1), HeLa (2), Jurkat (3), and Lovo (4) cell lysate.

Western Blotting

Image 3. Western blot analysis using ABCG5 mAb against human ABCG5 recombinant protein. (Expected MW is 32.7 kDa)

Please check the product details page for more images. Overall 5 images are available for ABIN1724806.