antibodies - online.com

anti-HCN4 antibody (AA 1019-1198) (APC)

Overview

Quantity:	100 μg
Target:	HCN4
Binding Specificity:	AA 1019-1198
Reactivity:	Rat
Host:	Mouse
Clonality:	Monoclonal
Conjugate:	This HCN4 antibody is conjugated to APC
Application:	Western Blotting (WB), Immunohistochemistry (IHC), Immunofluorescence (IF), Immunocytochemistry (ICC), Flow Cytometry (FACS), Antibody Array (AA)

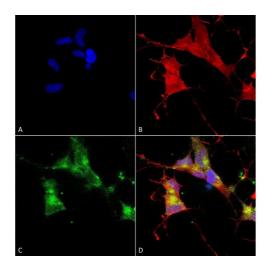
Product Details

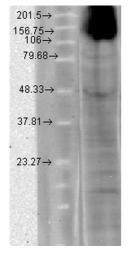
Immunogen:	Fusion protein amino acids 1019-1198 (c-terminus) of rat HCN4
Clone:	N114-10 (Formerly S114-10)
Isotype:	lgG1
Specificity:	Detects ~130 kDa. No cross-reactivity against other HCNs.
Cross-Reactivity:	Human, Mouse, Rabbit, Rat
Purification:	Protein G Purified

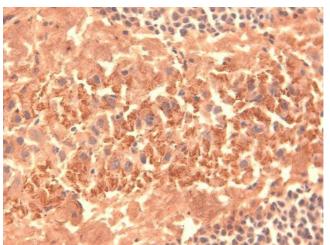
Target Details

							•						
								•					
									•				

Target Details	
Alternative Name:	HCN4 (HCN4 Products)
Background:	Hyperpolarization-activated cation channels of the HCN gene family contribute to spontaneous rhythmic activity in both the heart and brain (1).
Gene ID:	59266
NCBI Accession:	NP_067690
UniProt:	Q9JKA7
Application Details	
Application Notes:	 WB (1:1000) IHC (1:1000) ICC/IF (1:100) optimal dilutions for assays should be determined by the user.
Comment:	1 μg/ml of ABIN2482535 was sufficient for detection of HCN4 in 10 μg of COS cell lysate


1 μ g/ml of ABIN2482535 was sufficient for detection of HCN4 in 10 μ g of COS cell lysate transiently transfected with HCN4 by colorimetric immunoblot analysis using Goat anti-mouse lgG:HRP as the secondary antibody.


Restrictions:


For Research Use only

Handling

Format:	Liquid
Concentration:	1 mg/mL
Buffer:	PBS pH 7.4, 50 % glycerol, 0.09 % sodium azide, Storage buffer may change when conjugated
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	4 °C
Storage Comment:	Conjugated antibodies should be stored at 4°C

Immunocytochemistry

Image 1. Immunocytochemistry/Immunofluorescence analysis using Mouse Anti-HCN4 Monoclonal Antibody, Clone N114/10 (ABIN2482535). Tissue: Neuroblastoma cells (SH-SY5Y). Species: Human. Fixation: 4 % PFA for 15 min. Primary Antibody: Mouse Anti-HCN4 Monoclonal Antibody (ABIN2482535) at 1:100 for overnight at 4 °C with slow rocking. Secondary Antibody: AlexaFluor 488 at 1:1000 for 1 hour at RT. Counterstain: Phalloidin-iFluor 647 (red) F-Actin stain, Hoechst (blue) nuclear stain at 1:800, 1.6 mM for 20 min at RT. (A) Hoechst (blue) nuclear stain. (B) Phalloidin-iFluor 647 (red) F-Actin stain. (C) HCN4 Antibody (D) Composite.

Western Blotting

Image 2. Western Blot analysis of Human T-HEK cell lysate showing detection of HCN4 protein using Mouse Anti-HCN4 Monoclonal Antibody, Clone S114-10 . Load: 15 μg. Block: 1.5% BSA for 30 minutes at RT. Primary Antibody: Mouse Anti-HCN4 Monoclonal Antibody at 1:1000 for 2 hours at RT. Secondary Antibody: Sheep Anti-Mouse IgG: HRP for 1 hour at RT.

Immunohistochemistry

Image 3. Immunohistochemistry analysis using Mouse Anti-HCN4 Monoclonal Antibody, Clone S114-10 . Tissue: frozen brain section. Species: mouse. Fixation: 10% Formalin Solution for 12-24 hours at RT. Primary Antibody: Mouse Anti-HCN4 Monoclonal Antibody at 1:1000 for 1 hour at RT. Secondary Antibody: HRP/DAB Detection System: Biotinylated Goat Anti-Mouse, Streptavidin Peroxidase, DAB Chromogen (brown) for 30 minutes at RT. Counterstain: Mayer Hematoxylin (purple/blue) nuclear stain at 250-500 µl for 5 minutes at RT.

Please check the product details page for more images. Overall 4 images are available for ABIN2482535.
, <u> </u>