.-online.com antibodies

Datasheet for ABIN2486534 anti-FKBP4 antibody (PE)

5 Images

Overview

Quantity:	100 µg
Target:	FKBP4
Reactivity:	Human
Host:	Mouse
Clonality:	Monoclonal
Conjugate:	This FKBP4 antibody is conjugated to PE
Application:	Western Blotting (WB), Immunohistochemistry (IHC), Immunoprecipitation (IP), Immunofluorescence (IF), Immunocytochemistry (ICC)

Product Details

Immunogen:	Synthetic peptide corresponding to the residues of human FKBP52
Clone:	Hi52C
Isotype:	lgG2a
Specificity:	Detects ~52 kDa. Heavy chain migrates close to FKBP52 on SDS PAGE.
Cross-Reactivity:	Dog, Hamster, Human, Mouse, Rat
Purification:	Protein G Purified

Target Details

Target:	FKBP4
Alternative Name:	FKBP52 (FKBP4 Products)

Order at www.antibodies-online.com | www.antikoerper-online.de | www.anticorps-enligne.fr | www.antibodies-online.cn International: +49 (0)241 95 163 153 | USA & Canada: +1 877 302 8632 | support@antibodies-online.com Page 1/4 | Product datasheet for ABIN2486534 | 09/11/2023 | Copyright antibodies-online. All rights reserved.

Background:	HSP90 is crucial to cellular signaling by its regulation of the folding, activity, and stability of a
	wide range of client proteins. These client protein complexes may also contain one or more
	cochaperones (1). One class of HSP90-binding cochaperone is composed of proteins with a
	characteristic tetratricopeptide repeat (TPR) domain that forms an HSP90 binding site. Among
	the TPR cochaperones of HSP90 are Hop/Sti1, protein phosphatase PP5, and members of both
	the FK506- and cyclosporin A-binding families of immunophilins (2). FK506-binding protein 51
	(FKBP51) and FKBP52 are large molecular weight immunophilins that are part of the mature
	glucocorticoid receptor (GR) heterocomplex (3). The N terminal domain of each protein binds
	FK506 and has peptidyl-prolyl isomerase (PPlase) activity that converts prolyl peptide bonds
	within target proteins from cis- to trans- proline. The C-terminal domains contain the TPR
	repeats involved in protein-protein interactions with the HSP90 (4). Although FKBP52 and
	FKBP51 share \sim 75 % sequence similarity, they affect hormone binding by glucocorticoid
	receptor in opposing manners and have different HSP90-binding characteristics (3). FK506
	binding protein 51 kDa (FKBP51 or otherwise referred to as FKBP54) has been identified as a
	progestininducible gene. This protein is predominantly expressed in murine T cells but in
	humans, it is abundantly expressed in numerous tissues at levels many times higher than
	FKBP12. The FKBP51 gene is known to be induced by glucocorticoids (5).

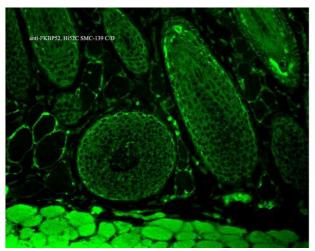
Gene ID:	2288
NCBI Accession:	NP_002005
UniProt:	Q02790
Pathways:	Intracellular Steroid Hormone Receptor Signaling Pathway

Application Details

Application Notes:	 WB (1:2000) IHC (1:250) ICC/IF (1:1000) IP (5 µg) optimal dilutions for assays should be determined by the user.
Comment:	0.5 μg/ml was sufficient for detection of FKBP52 in 20 μg total protein using WB by colorimetric immunoblot analysis using Goat Anti-Mouse IgG:HRP as the secondary.
Restrictions:	For Research Use only

Order at www.antibodies-online.com | www.antikoerper-online.de | www.anticorps-enligne.fr | www.antibodies-online.cn International: +49 (0)241 95 163 153 | USA & Canada: +1 877 302 8632 | support@antibodies-online.com Page 2/4 | Product datasheet for ABIN2486534 | 09/11/2023 | Copyright antibodies-online. All rights reserved.

Handling


Format:	Liquid
Concentration:	1 mg/mL
Buffer:	PBS, 50 % glycerol, 0.09 % sodium azide, Storage buffer may change when conjugated
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	4 °C
Storage Comment:	Conjugated antibodies should be stored at 4°C

Images

Immunohistochemistry

Image 1. Immunohistochemistry analysis using Mouse Anti-FKBP52 Monoclonal Antibody, Clone Hi52C . Tissue: prostate tissue (ductal epithelial cells). Species: Human. Primary Antibody: Mouse Anti-FKBP52 Monoclonal Antibody at 1:1000. Courtesy of: David F. Smith, Mayo Clinic, USA.

Immunohistochemistry

Image 2. Immunohistochemistry analysis using Mouse Anti-FKBP52 Monoclonal Antibody, Clone Hi52C . Tissue: backskin. Species: Mouse. Fixation: Bouin's Fixative and paraffin-embedded. Primary Antibody: Mouse Anti-FKBP52 Monoclonal Antibody at 1:100 for 1 hour at RT. Secondary Antibody: FITC Goat Anti-Mouse (green) at 1:50 for 1 hour at RT. Localization: Epidermis.

Order at www.antibodies-online.com | www.antikoerper-online.de | www.anticorps-enligne.fr | www.antibodies-online.cn International: +49 (0)241 95 163 153 | USA & Canada: +1 877 302 8632 | support@antibodies-online.com Page 3/4 | Product datasheet for ABIN2486534 | 09/11/2023 | Copyright antibodies-online. All rights reserved. Images

Rat Brain →→ 41→ 2011 2012 20	Rat Skeletal Muscle→ Rat Pancreas→ Rat Lung→ Rat Liver→ Rat Kidney→ Rat Kidney→	H9C2→ Rat Thymus→ Rat Testes→ Rat Spleen→	Pam212→ NIH 3T3→	≿291.5 5 ≿795.5 5 ≿795.5 8	
48.33→	1			←48.33	
37.81→		er' 🖶		←37.81	
23.27→ 18.19→		_		←23.27 ←18.19	
14.17→ 9.50→				←14.17 ←9.50	
	Source: Conc: Cat#:	Conc: Cat#:		Mouse Monociona StressMarq 1.5ug/mL SMC-139D	
	Lot#: MVV: Sample:		710 52 kDa 15ua p	a prot/lane	

Western Blotting

Image 3. Western Blot analysis of Rat Brain, Heart, Kidney, Liver, Pancreas, Skeletal muscle, Spleen, Testes, Thymus cell lysates showing detection of FKBP52 protein using Mouse Anti-FKBP52 Monoclonal Antibody, Clone Hi52C . Load: 15 µg. Block: 1.5% BSA for 30 minutes at RT. Primary Antibody: Mouse Anti-FKBP52 Monoclonal Antibody at 1.5 µg/mL for 2 hours at RT. Secondary Antibody: Sheep Anti-Mouse IgG: HRP for 1 hour at RT.

Please check the product details page for more images. Overall 5 images are available for ABIN2486534.