

Datasheet for ABIN2745733

AADAT Protein (His tag)

Overview

Quantity:	50 μg
Target:	AADAT
Origin:	Human
Source:	Escherichia coli (E. coli)
Protein Type:	Recombinant
Purification tag / Conjugate:	This AADAT protein is labelled with His tag.
Application:	SDS-PAGE (SDS)

Product Details

Purpose:	Kynurenine Aminotransferase II (human) (rec.) (His)
Cross-Reactivity:	Human
Characteristics:	Human full-length KAT II is fused at the N-terminus to a His-tag.
Purity:	>97 % (SDS-PAGE)

Target Details

Target:	AADAT	
Alternative Name:	Kynurenine Aminotransferase II (AADAT Products)	
Background:	hKAT II, KAT2, alpha-Aminoadipate Aminotransferase (Mitochondrial), AADAT, EC 2.6.1.7	
	Kynurenine aminotransferases (KATs) are pyridoxal-5'-phosphate-dependent enzymes that	
	catalyze the conversion of L-kynurenine into kynurenic acid, a neuroactive metabolite whose	
	unbalancing is associated with a number of brain disorders. Biochemical and structural	

Target Details

investigations revealed that L-kynurenine (L-KYN) recognition by hKAT II is achieved by exploiting structural features that are peculiar of this isoform, thus offering the possibility to select/design inhibitor molecules specifically targeting hKAT II to be used as modulators of kynurenic acid synthesis in the CNS. hKAT II is one of the aminotransferases involved in the pyridoxal 5'-phosphate (PLP)-dependent irreversible transamination of L-kynurenine (L-KYN) to kynurenic acid (KYNA) in the central nervous system. When assayed in vitro the protein also displays beta-elimination activity.

Molecular Weight:

~49.8kDa

Application Details

Application Notes:	Optimal working dilution should be determined by the investigator.
Restrictions:	For Research Use only
Handling	
Format:	Liquid

Concentration:	Lot specific
Buffer:	In 50 mM phosphate buffer pH 8.0, containing 50 mM sodium chloride and 40µM pyridoxal 5'-phosphate (PLP).
Handling Advice:	After opening, prepare aliquots and store at -80 °C. Avoid freeze/thaw cycles.

Storage:	-20 °C,-80 °C	
Storage Comment:	Short Term Storage: -20°C	

Long Term Storage: -80°C

Use & Stability: Stable for at least 6 months after receipt when stored at -80°C.

Expiry Date: 6 months