antibodies - online.com

Datasheet for ABIN2774916

anti-STUB1 antibody (N-Term)

Images

Overview

Quantity:	100 μL
Target:	STUB1
Binding Specificity:	N-Term
Reactivity:	Human, Mouse, Rat, Cow, Guinea Pig, Zebrafish (Danio rerio)
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	This STUB1 antibody is un-conjugated
Application:	Western Blotting (WB), Immunohistochemistry (IHC)

Product Details

Immunogen:	The immunogen is a synthetic peptide directed towards the N terminal region of human STUB1
Sequence:	MKGKEEKEGG ARLGAGGGSP EKSPSAQELK EQGNRLFVGR KYPEAAACYG
Predicted Reactivity:	Cow: 100%, Guinea Pig: 100%, Human: 100%, Mouse: 100%, Rat: 100%, Zebrafish: 93%
Characteristics:	This is a rabbit polyclonal antibody against STUB1. It was validated on Western Blot using a cell lysate as a positive control.
Purification:	Affinity Purified

Target Details

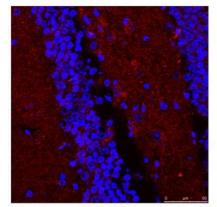
Target:	STUB1
Alternative Name:	STUB1 (STUB1 Products)


Target Details

y of several chaperone complexes, including Hsp70, Hsc70 and otein ligase activity and targets misfolded chaperone substrates ation. STUB1 mediates transfer of non-canonical short ubiquitin of effect on HSPA8 degradation. P2, NY-CO-7, SDCCAG7, UBOX1 SP90AA1, HSPA8, PCSK9, OLFM3, ATCAY, CCL28, UBE2Q1, TXN2, 1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1, DOG, TXLNG,
ation. STUB1 mediates transfer of non-canonical short ubiquitin of effect on HSPA8 degradation. P2, NY-CO-7, SDCCAG7, UBOX1 ISP90AA1, HSPA8, PCSK9, OLFM3, ATCAY, CCL28, UBE2Q1, TXN2, 1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
o effect on HSPA8 degradation. P2, NY-CO-7, SDCCAG7, UBOX1 ISP90AA1, HSPA8, PCSK9, OLFM3, ATCAY, CCL28, UBE2Q1, TXN2, 1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
P2, NY-CO-7, SDCCAG7, UBOX1 SP90AA1, HSPA8, PCSK9, OLFM3, ATCAY, CCL28, UBE2Q1, TXN2, 1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
SP90AA1, HSPA8, PCSK9, OLFM3, ATCAY, CCL28, UBE2Q1, TXN2, 1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
1, STUB1, UBE2V1, UBE2N, UBE2D3, UBE2D1, UBC, TP53, MAPT, PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
PA4L, CDC37, DNAJB6, BAG2, BAG3, BAG4, MLF2, HSP90AB1,
DOG, TXLNG,
bolic Process, Response to Water Deprivation
ould be determined experimentally by the investigator.
olied in 1x PBS buffer with 0.09 % (w/v) sodium azide and 2 %
olied in 1x PBS buffer with 0.09 % (w/v) sodium azide and 2 %
olied in 1x PBS buffer with 0.09 % (w/v) sodium azide and 2 %
olied in 1x PBS buffer with 0.09 % (w/v) sodium azide and 2 % m azide: a POISONOUS AND HAZARDOUS SUBSTANCE which
Σţ

Handling

-20 °C
For short term use, store at 2-8°C up to 1 week. For long term storage, store at -20°C in small aliquots to prevent freeze-thaw cycles.


Images

Western Blotting

Image 1. WB Suggested Anti-STUB1 Antibody Titration: 0.2-1 ug/ml ELISA Titer: 1:312500 Positive Control: Human Spleen

STUB1

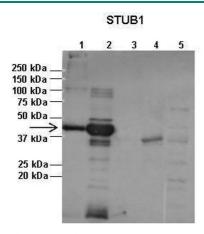
See Immunohistochemistry 1 Data for more information.

Immunohistochemistry

Image 2. Sample Type: Mouse Brain Slices

Red: primary **Blue:** DAPI

Primary Dilution: 1:400


Secondary Antibody: Anti-Rabbit IgG Alexa 594

Secondary Dilution: 1:400

Image Submitted By: Adahir Labrador-Garrido and Cintia

Roodveldt

University of Seville

See Immunoblot 2 Data and customer Feedback for more Information

Western Blotting

Image 3. Lanes: 1:1ug insoluble STUB1 protein, 2:1ug soluble STUB1 protein, 3:1ug EPM2A protein, 4:1ug insoluble PPP1R3C protein, 5:1ug soluble PPP1R3C protein Primary Antibody Dilution: 1:2500 Secondary Antibody: Antirabbit-AP Secondary Antibody Dilution: 1:20,000 Gene Name: STUB1 Submitted by: Pedro Castanheira, Biocant

Please check the product details page for more images. Overall 4 images are available for ABIN2774916.