

Datasheet for ABIN3084516 SCP2 Protein (AA 1-547) (Strep Tag)

Go to Product page

_					
	W	0	rv	10	W

Quantity:	250 μg
Target:	SCP2
Protein Characteristics:	AA 1-547
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This SCP2 protein is labelled with Strep Tag.
Application:	SDS-PAGE (SDS), Western Blotting (WB), ELISA

Product Details	
Brand:	AliCE®
Sequence:	MSSSPWEPAT LRRVFVVGVG MTKFVKPGAE NSRDYPDLAE EAGKKALADA QIPYSAVDQA
	CVGYVFGDST CGQRAIYHSL GMTGIPIINV NNNCATGSTA LFMARQLIQG GVAECVLALG
	FEKMSKGSLG IKFSDRTIPT DKHVDLLINK YGLSAHPVAP QMFGYAGKEH MEKYGTKIEH
	FAKIGWKNHK HSVNNPYSQF QDEYSLDEVM ASKEVFDFLT ILQCCPTSDG AAAAILASEA
	FVQKYGLQSK AVEILAQEMM TDLPSSFEEK SIIKMVGFDM SKEAARKCYE KSGLTPNDID
	VIELHDCFST NELLTYEALG LCPEGQGATL VDRGDNTYGG KWVINPSGGL ISKGHPLGAT
	GLAQCAELCW QLRGEAGKRQ VPGAKVALQH NLGIGGAVVV TLYKMGFPEA ASSFRTHQIE
	AVPTSSASDG FKANLVFKEI EKKLEEEGEQ FVKKIGGIFA FKVKDGPGGK EATWVVDVKN
	GKGSVLPNSD KKADCTITMA DSDFLALMTG KMNPQSAFFQ GKLKITGNMG LAMKLQNLQL
	QPGNAKL
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	SCP2
Alternative Name:	SCP2 (SCP2 Products)
Background:	Sterol carrier protein 2 (SCP-2) (Acetyl-CoA C-myristoyltransferase) (EC 2.3.1.155) (Non-specifi
	lipid-transfer protein) (NSL-TP) (Propanoyl-CoA C-acyltransferase) (EC 2.3.1.176) (SCP-2/3-
	oxoacyl-CoA thiolase) (SCP-2/thiolase) (EC 2.3.1.16) (SCP-chi) (SCPX) (Sterol carrier protein X)
	(SCP-X),FUNCTION: [Isoform SCPx]: Plays a crucial role in the peroxisomal oxidation of
	branched-chain fatty acids (PubMed:10706581). Catalyzes the last step of the peroxisomal
	beta-oxidation of branched chain fatty acids and the side chain of the bile acid intermediates d
	and trihydroxycoprostanic acids (DHCA and THCA) (PubMed:10706581). Also active with
	medium and long straight chain 3-oxoacyl-CoAs. Stimulates the microsomal conversion of 7-
	dehydrocholesterol to cholesterol and transfers phosphatidylcholine and 7-dehydrocholesterol
	between membrances, in vitro (By similarity). Isoforms SCP2 and SCPx cooperate in
	peroxisomal oxidation of certain naturally occurring tetramethyl-branched fatty acyl-CoAs (By
	similarity). {ECO:0000250 UniProtKB:P11915, ECO:0000250 UniProtKB:P32020,
	ECO:0000269 PubMed:10706581}., FUNCTION: [Isoform SCP2]: Mediates the transfer of all
	common phospholipids, cholesterol and gangliosides from the endoplasmic reticulum to the
	plasma membrane. May play a role in regulating steroidogenesis (PubMed:17157249,
	PubMed:8300590, PubMed:7642518). Stimulates the microsomal conversion of 7-
	dehydrocholesterol to cholesterol (By similarity). Also binds fatty acids and fatty acyl Coenzym
	A (CoA) such as phytanoyl-CoA. Involved in the regulation phospholipid synthesis in
	endoplasmic reticulum enhancing the incorporation of exogenous fatty acid into glycerides.
	Seems to stimulate the rate-limiting step in phosphatidic acid formation mediated by GPAT3.
	Isoforms SCP2 and SCPx cooperate in peroxisomal oxidation of certain naturally occurring
	tetramethyl-branched fatty acyl-CoAs (By similarity). {ECO:0000250 UniProtKB:P11915,
	ECO:0000250 UniProtKB:P32020, ECO:0000269 PubMed:17157249,
	ECO:0000269 PubMed:7642518, ECO:0000269 PubMed:8300590}.
Molecular Weight:	59.0 kDa
UniProt:	P22307
Pathways:	C21-Steroid Hormone Metabolic Process, Monocarboxylic Acid Catabolic Process
Application Details	
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies
	as well. As the protein has not been tested for functional studies yet we cannot offer a

Application Details

Application Detail	
	guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce
	even the most difficult-to-express proteins, including those that require post-translational
	modifications.
	During lysate production, the cell wall and other cellular components that are not required for
	protein production are removed, leaving only the protein production machinery and the
	mitochondria to drive the reaction. During our lysate completion steps, the additional
	components needed for protein production (amino acids, cofactors, etc.) are added to produce
	something that functions like a cell, but without the constraints of a living system - all that's
	needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer.
	Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.

Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months