

Datasheet for ABIN3088189

PRKAA1 Protein (AA 1-559) (Strep Tag)

Go to Product page

_					
	W	0	rv	10	W

Quantity:	250 μg
Target:	PRKAA1
Protein Characteristics:	AA 1-559
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This PRKAA1 protein is labelled with Strep Tag.
Application:	Western Blotting (WB), SDS-PAGE (SDS), ELISA

Application:	Western Blotting (WB), SDS-PAGE (SDS), ELISA	
Product Details		
Brand:	AliCE®	
Sequence:	MRRLSSWRKM ATAEKQKHDG RVKIGHYILG DTLGVGTFGK VKVGKHELTG HKVAVKILNR	
	QKIRSLDVVG KIRREIQNLK LFRHPHIIKL YQVISTPSDI FMVMEYVSGG ELFDYICKNG	
	RLDEKESRRL FQQILSGVDY CHRHMVVHRD LKPENVLLDA HMNAKIADFG LSNMMSDGEF	
	LRTSCGSPNY AAPEVISGRL YAGPEVDIWS SGVILYALLC GTLPFDDDHV PTLFKKICDG	
	IFYTPQYLNP SVISLLKHML QVDPMKRATI KDIREHEWFK QDLPKYLFPE DPSYSSTMID	
	DEALKEVCEK FECSEEEVLS CLYNRNHQDP LAVAYHLIID NRRIMNEAKD FYLATSPPDS	
	FLDDHHLTRP HPERVPFLVA ETPRARHTLD ELNPQKSKHQ GVRKAKWHLG IRSQSRPNDI	
	MAEVCRAIKQ LDYEWKVVNP YYLRVRRKNP VTSTYSKMSL QLYQVDSRTY LLDFRSIDDE	
	ITEAKSGTAT PQRSGSVSNY RSCQRSDSDA EAQGKSSEVS LTSSVTSLDS SPVDLTPRPG	
	SHTIEFFEMC ANLIKILAQ	
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression	

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details	
Target:	PRKAA1
Alternative Name:	PRKAA1 (PRKAA1 Products)
Background:	5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1)
	(Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase)
	(HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26),FUNCTION:
	Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that
	plays a key role in regulating cellular energy metabolism (PubMed:17307971,
	PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of
	intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-
	consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell
	growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct
	phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of
	transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by
	phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1,
	HMGCR and LIPE, regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA
	carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively
	(By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of
	CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by
	phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in
	muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the
	plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity).
	Regulates transcription and chromatin structure by phosphorylating transcription regulators
	involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C,
	MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A
	(PubMed:11554766, PubMed:11518699, PubMed:15866171, PubMed:17711846,
	PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating
	CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In
	response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote
	transcription (By similarity). Acts as a key regulator of cell growth and proliferation by
	phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient
	limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of
	the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849,
	PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits
	GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-

mediated mTORC1 activation (PubMed:36732624). In response to energetic stress,

phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton, probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU, however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:20074060, PubMed:12519745). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060,

ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. 64.0 kDa

Molecular Weight:

UniProt:

Q13131

Pathways:

AMPK Signaling, Carbohydrate Homeostasis, Regulation of Carbohydrate Metabolic Process, Warburg Effect

Application Details

Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies as well. As the protein has not been tested for functional studies yet we cannot offer a guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce
	even the most difficult-to-express proteins, including those that require post-translational
	modifications.
	During lysate production, the cell wall and other cellular components that are not required for
	protein production are removed, leaving only the protein production machinery and the
	mitochondria to drive the reaction. During our lysate completion steps, the additional
	components needed for protein production (amino acids, cofactors, etc.) are added to produce
	something that functions like a cell, but without the constraints of a living system - all that's
	needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer.
	Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months