

Datasheet for ABIN3089508

beta Arrestin 1 Protein (AA 1-418) (Strep Tag)

Go to Product page

()	ve	r\/i	۱۸/
\cup	V C	1 / 1	 ٧V

Quantity:	250 μg
Target:	beta Arrestin 1 (ARRB1)
Protein Characteristics:	AA 1-418
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This beta Arrestin 1 protein is labelled with Strep Tag.
Application:	Western Blotting (WB), SDS-PAGE (SDS), ELISA

Product Details		
Brand:	AliCE®	
Sequence:	MGDKGTRVFK KASPNGKLTV YLGKRDFVDH IDLVDPVDGV VLVDPEYLKE RRVYVTLTCA	
	FRYGREDLDV LGLTFRKDLF VANVQSFPPA PEDKKPLTRL QERLIKKLGE HAYPFTFEIP	
	PNLPCSVTLQ PGPEDTGKAC GVDYEVKAFC AENLEEKIHK RNSVRLVIRK VQYAPERPGP	
	QPTAETTRQF LMSDKPLHLE ASLDKEIYYH GEPISVNVHV TNNTNKTVKK IKISVRQYAD	
	ICLFNTAQYK CPVAMEEADD TVAPSSTFCK VYTLTPFLAN NREKRGLALD GKLKHEDTNL	
	ASSTLLREGA NREILGIIVS YKVKVKLVVS RGGLLGDLAS SDVAVELPFT LMHPKPKEEP	
	PHREVPENET PVDTNLIELD TNDDDIVFED FARQRLKGMK DDKEEEEDGT GSPQLNNR	
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression	
	system, a different complexity of the protein could make another tag necessary. In case you	
	have a special request, please contact us.	
Characteristics:	Key Benefits:	

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- · State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- The protein's absorbance will be measured against its specific reference buffer.
- · We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity: > 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC	
Grade:	custom-made
Target Details	
Target:	beta Arrestin 1 (ARRB1)

Alternative Name:

ARRB1 (ARRB1 Products)

Background:

Beta-arrestin-1 (Arrestin beta-1) (Non-visual arrestin-2), FUNCTION: Functions in regulating agonist-mediated G-protein coupled receptor (GPCR) signaling by mediating both receptor desensitization and resensitization processes. During homologous desensitization, betaarrestins bind to the GPRK-phosphorylated receptor and sterically preclude its coupling to the cognate G-protein, the binding appears to require additional receptor determinants exposed only in the active receptor conformation. The beta-arrestins target many receptors for internalization by acting as endocytic adapters (CLASPs, clathrin-associated sorting proteins) and recruiting the GPRCs to the adapter protein 2 complex 2 (AP-2) in clathrin-coated pits (CCPs). However, the extent of beta-arrestin involvement appears to vary significantly depending on the receptor, agonist and cell type. Internalized arrestin-receptor complexes traffic to intracellular endosomes, where they remain uncoupled from G-proteins. Two different modes of arrestin-mediated internalization occur. Class A receptors, like ADRB2, OPRM1, ENDRA, D1AR and ADRA1B dissociate from beta-arrestin at or near the plasma membrane and undergo rapid recycling. Class B receptors, like AVPR2, AGTR1, NTSR1, TRHR and TACR1 internalize as a complex with arrestin and traffic with it to endosomal vesicles, presumably as desensitized receptors, for extended periods of time. Receptor resensitization then requires that receptor-bound arrestin is removed so that the receptor can be dephosphorylated and returned to the plasma membrane. Involved in internalization of P2RY4 and UTP-stimulated internalization of P2RY2. Involved in phosphorylation-dependent internalization of OPRD1 ands subsequent recycling. Involved in the degradation of cAMP by recruiting cAMP phosphodiesterases to ligand-activated receptors. Beta-arrestins function as multivalent adapter proteins that can switch the GPCR from a G-protein signaling mode that transmits short-lived signals from the plasma membrane via small molecule second messengers and ion channels to a beta-arrestin signaling mode that transmits a distinct set of signals that are initiated as the receptor internalizes and transits the intracellular compartment. Acts as a signaling scaffold for MAPK pathways such as MAPK1/3 (ERK1/2). ERK1/2 activated by the beta-arrestin scaffold is largely excluded from the nucleus and confined to cytoplasmic locations such as endocytic vesicles, also called beta-arrestin signalosomes. Recruits c-Src/SRC to ADRB2 resulting in ERK activation. GPCRs for which the beta-arrestin-mediated signaling relies on both ARRB1 and ARRB2 (codependent regulation) include ADRB2, F2RL1 and PTH1R. For some GPCRs the beta-arrestin-mediated signaling relies on either ARRB1 or ARRB2 and is inhibited by the other respective beta-arrestin form (reciprocal regulation). Inhibits ERK1/2 signaling in AGTR1- and AVPR2-mediated activation (reciprocal regulation). Is required for SP-stimulated endocytosis of NK1R and recruits c-Src/SRC to internalized NK1R resulting in

ERK1/2 activation, which is required for the antiapoptotic effects of SP. Is involved in proteinase-activated F2RL1-mediated ERK activity. Acts as a signaling scaffold for the AKT1 pathway. Is involved in alpha-thrombin-stimulated AKT1 signaling. Is involved in IGF1stimulated AKT1 signaling leading to increased protection from apoptosis. Involved in activation of the p38 MAPK signaling pathway and in actin bundle formation. Involved in F2RL1mediated cytoskeletal rearrangement and chemotaxis. Involved in AGTR1-mediated stress fiber formation by acting together with GNAQ to activate RHOA. Appears to function as signaling scaffold involved in regulation of MIP-1-beta-stimulated CCR5-dependent chemotaxis. Involved in attenuation of NF-kappa-B-dependent transcription in response to GPCR or cytokine stimulation by interacting with and stabilizing CHUK. May serve as nuclear messenger for GPCRs. Involved in OPRD1-stimulated transcriptional regulation by translocating to CDKN1B and FOS promoter regions and recruiting EP300 resulting in acetylation of histone H4. Involved in regulation of LEF1 transcriptional activity via interaction with DVL1 and/or DVL2 Also involved in regulation of receptors other than GPCRs. Involved in Toll-like receptor and IL-1 receptor signaling through the interaction with TRAF6 which prevents TRAF6 autoubiquitination and oligomerization required for activation of NF-kappa-B and JUN. Binds phosphoinositides. Binds inositolhexakisphosphate (InsP6) (By similarity). Involved in IL8-mediated granule release in neutrophils. Required for atypical chemokine receptor ACKR2-induced RAC1-LIMK1-PAK1dependent phosphorylation of cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation. Involved in the internalization of the atypical chemokine receptor ACKR3. Negatively regulates the NOTCH signaling pathway by mediating the ubiquitination and degradation of NOTCH1 by ITCH. Participates in the recruitment of the ubiquitin-protein ligase to the receptor (PubMed:23886940). {ECO:0000250, ECO:0000269|PubMed:12464600, ECO:0000269|PubMed:14711824, ECO:0000269|PubMed:15475570, ECO:0000269|PubMed:15611106, ECO:0000269|PubMed:15671180, ECO:0000269|PubMed:15878855, ECO:0000269|PubMed:16144840, ECO:0000269|PubMed:16280323, ECO:0000269|PubMed:16378096, ECO:0000269|PubMed:16492667, ECO:0000269|PubMed:16709866, ECO:0000269|PubMed:18337459, ECO:0000269|PubMed:18419762, ECO:0000269|PubMed:19620252, ECO:0000269|PubMed:19643177, ECO:0000269|PubMed:22457824, ECO:0000269|PubMed:23341447, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:23886940}.

Molecular Weight:

47.1 kDa

UniProt:

P49407

Target Details

Pathways:

Positive Regulation of Peptide Hormone Secretion, Nuclear Hormone Receptor Binding, cAMP Metabolic Process, Myometrial Relaxation and Contraction, Synaptic Membrane, Regulation of G-Protein Coupled Receptor Protein Signaling, Phototransduction

Application Details

Application Notes:

In addition to the applications listed above we expect the protein to work for functional studies as well. As the protein has not been tested for functional studies yet we cannot offer a guarantee though.

Comment:

ALICE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require post-translational modifications.

During lysate production, the cell wall and other cellular components that are not required for protein production are removed, leaving only the protein production machinery and the mitochondria to drive the reaction. During our lysate completion steps, the additional components needed for protein production (amino acids, cofactors, etc.) are added to produce something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!

Restrictions:

For Research Use only

Handling

Format:	Liquid	
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.	
Handling Advice:	Avoid repeated freeze-thaw cycles.	
Storage:	-80 °C	
Storage Comment:	Store at -80°C.	
Expiry Date:	12 months	