

Datasheet for ABIN3095014

RGS14 Protein (AA 1-566) (Strep Tag)

Go to Product page

_				
	۱۱ / ۱	rv		۱۸/
	' V '	 ı v	Ι.	v v

Quantity:	250 μg
Target:	RGS14
Protein Characteristics:	AA 1-566
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This RGS14 protein is labelled with Strep Tag.
Application:	SDS-PAGE (SDS), ELISA, Western Blotting (WB)

Application:	SDS-PAGE (SDS), ELISA, Western Blotting (WB)		
Product Details			
Brand:	AliCE®		
Sequence:	MPGKPKHLGV PNGRMVLAVS DGELSSTTGP QGQGEGRGSS LSIHSLPSGP SSPFPTEEQP		
	VASWALSFER LLQDPLGLAY FTEFLKKEFS AENVTFWKAC ERFQQIPASD TQQLAQEARN		
	IYQEFLSSQA LSPVNIDRQA WLGEEVLAEP RPDMFRAQQL QIFNLMKFDS YARFVKSPLY		
	RECLLAEAEG RPLREPGSSR LGSPDATRKK PKLKPGKSLP LGVEELGQLP PVEGPGGRPL		
	RKSFRRELGG TANAALRRES QGSLNSSASL DLGFLAFVSS KSESHRKSLG STEGESESRP		
	GKYCCVYLPD GTASLALARP GLTIRDMLAG ICEKRGLSLP DIKVYLVGNE QALVLDQDCT		
	VLADQEVRLE NRITFELELT ALERVVRISA KPTKRLQEAL QPILEKHGLS PLEVVLHRPG		
	EKQPLDLGKL VSSVAAQRLV LDTLPGVKIS KARDKSPCRS QGCPPRTQDK ATHPPPASPS		
	SLVKVPSSAT GKRQTCDIEG LVELLNRVQS SGAHDQRGLL RKEDLVLPEF LQLPAQGPSS		
	EETPPQTKSA AQPIGGSLNS TTDSAL		
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expressi		

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	RGS14		
Alternative Name:	RGS14 (RGS14 Products)		
Background:	Regulator of G-protein signaling 14 (RGS14),FUNCTION: Regulates G protein-coupled receptor		
	signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein		
	alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates		
	signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor		
	(GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-		
	alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold		
	integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived		
	growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation, a process depending on its		
	interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive		
	modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-		
	dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-		
	mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory		
	processing capacity and hippocampal-based learning and memory.		
	{ECO:0000269 PubMed:15917656, ECO:0000269 PubMed:17635935}.		
Molecular Weight:	61.4 kDa		
UniProt:	O43566		
Pathways:	Myometrial Relaxation and Contraction, Regulation of G-Protein Coupled Receptor Protein		
	Signaling, Platelet-derived growth Factor Receptor Signaling		
Application Details			
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies		
	as well. As the protein has not been tested for functional studies yet we cannot offer a		
	guarantee though.		
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from		
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce		
	even the most difficult-to-express proteins, including those that require post-translational		
	modifications.		
	During lysate production, the cell wall and other cellular components that are not required for		
	protein production are removed, leaving only the protein production machinery and the		
	mitochondria to drive the reaction. During our lysate completion steps, the additional		
	components needed for protein production (amino acids, cofactors, etc.) are added to produce		

Application Details

	something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months