

Datasheet for ABIN3095078

RNF168 Protein (AA 1-571) (Strep Tag)

Go to Product page

_				
()	ve.	rv/	101	Λ

Quantity:	250 μg
Target:	RNF168
Protein Characteristics:	AA 1-571
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This RNF168 protein is labelled with Strep Tag.
Application:	ELISA, Western Blotting (WB), SDS-PAGE (SDS)

Product Details	
Brand:	AliCE®
Sequence:	MALPKDAIPS LSECQCGICM EILVEPVTLP CNHTLCKPCF QSTVEKASLC CPFCRRRVSS
	WTRYHTRRNS LVNVELWTII QKHYPRECKL RASGQESEEV ADDYQPVRLL SKPGELRREY
	EEEISKVAAE RRASEEEENK ASEEYIQRLL AEEEEEEKRQ AEKRRRAMEE QLKSDEELAR
	KLSIDINNFC EGSISASPLN SRKSDPVTPK SEKKSKNKQR NTGDIQKYLT PKSQFGSASH
	SEAVQEVRKD SVSKDIDSSD RKSPTGQDTE IEDMPTLSPQ ISLGVGEQGA DSSIESPMPW
	LCACGAEWYH EGNVKTRPSN HGKELCVLSH ERPKTRVPYS KETAVMPCGR TESGCAPTSG
	VTQTNGNNTG ETENEESCLL ISKEISKRKN QESSFEAVKD PCFSAKRRKV SPESSPDQEE
	TEINFTQKLI DLEHLLFERH KQEEQDRLLA LQLQKEVDKE QMVPNRQKGS PDEYHLRATS
	SPPDKVLNGQ RKNPKDGNFK RQTHTKHPTP ERGSRDKNRQ VSLKMQLKQS VNRRKMPNST
	RDHCKVSKSA HSLQPSISQK SVFQMFQRCT K
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	RNF168 (RNF168 Products)	
Alternative Name:		
Background:	E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-	
	type E3 ubiquitin transferase RNF168),FUNCTION: E3 ubiquitin-protein ligase required for	
	accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify	
	the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand	
	breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-	
	dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates.	
	This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold	
	required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links	
	(ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and	
	H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed	
	by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent	
	transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision	
	between transcription and repair intermediates. Also involved in class switch recombination in	
	immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the	
	ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to	
	unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not	
	able to initiate 'Lys-63'-linked ubiquitination in vitro, possibly due to partial occlusion of the	
	UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of	
	nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255 HAMAP-	
	Rule:MF_03066, EC0:0000269 PubMed:19203578, EC0:0000269 PubMed:19203579,	
	ECO:0000269 PubMed:20550933, ECO:0000269 PubMed:22373579,	
	ECO:0000269 PubMed:22705371, ECO:0000269 PubMed:22713238,	
	ECO:0000269 PubMed:22742833, ECO:0000269 PubMed:22980979,	
	ECO:0000269 PubMed:23760478, ECO:0000269 PubMed:27153538}.	
Molecular Weight:	65.0 kDa	
UniProt:	Q8IYW5	
Pathways:	Production of Molecular Mediator of Immune Response	
Application Details		
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies	
	as well. As the protein has not been tested for functional studies yet we cannot offer a	

Application Details

Storage:

Expiry Date:

Storage Comment:

Application Details	
	guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce
	even the most difficult-to-express proteins, including those that require post-translational
	modifications.
	During lysate production, the cell wall and other cellular components that are not required for
	protein production are removed, leaving only the protein production machinery and the
	mitochondria to drive the reaction. During our lysate completion steps, the additional
	components needed for protein production (amino acids, cofactors, etc.) are added to produce
	something that functions like a cell, but without the constraints of a living system - all that's
	needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer.
	Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.

-80 °C

Store at -80°C.

12 months