

Datasheet for ABIN3112982

KCNA2 Protein (AA 1-499) (Strep Tag)

Go to Product page

()	ve	r\/i	۱۸/
\cup	V C	1 / 1	 ٧V

Quantity:	250 μg
Target:	KCNA2
Protein Characteristics:	AA 1-499
Origin:	Human
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This KCNA2 protein is labelled with Strep Tag.
Application:	ELISA, SDS-PAGE (SDS), Western Blotting (WB)

Product Details			
Brand:	AliCE®		
Sequence:	MTVATGDPAD EAAALPGHPQ DTYDPEADHE CCERVVINIS GLRFETQLKT LAQFPETLLG		
	DPKKRMRYFD PLRNEYFFDR NRPSFDAILY YYQSGGRLRR PVNVPLDIFS EEIRFYELGE		
	EAMEMFREDE GYIKEEERPL PENEFQRQVW LLFEYPESSG PARIIAIVSV MVILISIVSF		
	CLETLPIFRD ENEDMHGSGV TFHTYSNSTI GYQQSTSFTD PFFIVETLCI IWFSFEFLVR		
	FFACPSKAGF FTNIMNIIDI VAIIPYFITL GTELAEKPED AQQGQQAMSL AILRVIRLVR VFRIFKLSRH		
	SKGLQILGQT LKASMRELGL LIFFLFIGVI LFSSAVYFAE ADERESQFPS IPDAFWWAVV		
	SMTTVGYGDM VPTTIGGKIV GSLCAIAGVL TIALPVPVIV SNFNYFYHRE TEGEEQAQYL		
	QVTSCPKIPS SPDLKKSRSA STISKSDYME IQEGVNNSNE DFREENLKTA NCTLANTNYV		
	NITKMLTDV		
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression		
	system, a different complexity of the protein could make another tag necessary. In case you		

have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target: KCNA2

Alternative Name: KCNA2 (KCNA2 Products)

Background:

Potassium voltage-gated channel subfamily A member 2 (NGK1) (Voltage-gated K(+) channel HuKIV) (Voltage-gated potassium channel HBK5) (Voltage-gated potassium channel subunit Kv1.2), FUNCTION: Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and the central nervous system, but also in the cardiovascular system. Prevents aberrant action potential firing and regulates neuronal output. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:19912772, PubMed:8495559, PubMed:11211111, PubMed:23769686). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, KCNA6, KCNA7, and possibly other family members as well, channel properties depend on the type of alpha subunits that are part of the channel (PubMed:8495559, PubMed:20220134). Channel properties are modulated by cytoplasmic beta subunits that regulate the subcellular location of the alpha subunits and promote rapid inactivation of delayed rectifier potassium channels. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Homotetrameric KCNA2 forms a delayed-rectifier potassium channel that opens in response to membrane depolarization, followed by slow spontaneous channel closure (PubMed:19912772, PubMed:23769686). In contrast, a heteromultimer formed by KCNA2 and KCNA4 shows rapid inactivation (PubMed:8495559). Regulates neuronal excitability and plays a role as pacemaker in the regulation of neuronal action potentials (By similarity). KCNA2-containing channels play a presynaptic role and prevent hyperexcitability and aberrant action potential firing (By similarity). Response to toxins that are selective for KCNA2-containing potassium channels suggests that in Purkinje cells, dendritic subthreshold KCNA2-containing potassium channels prevent random spontaneous calcium spikes, suppressing dendritic hyperexcitability without hindering the generation of somatic action potentials, and thereby play an important role in motor coordination (By similarity). Plays a role in the induction of long-term potentiation of neuron excitability in the CA3 layer of the hippocampus (By similarity). May function as down-stream effector for G protein-coupled receptors and inhibit GABAergic inputs to basolateral amygdala neurons (By similarity). May contribute to the regulation of neurotransmitter release, such as gamma-aminobutyric acid (GABA) (By similarity). Contributes to the regulation of the axonal release of the neurotransmitter dopamine (By similarity). Reduced KCNA2 expression plays a

role in the perception of neuropathic pain after peripheral nerve injury, but not acute pain (By similarity). Plays a role in the regulation of the time spent in non-rapid eye movement (NREM) sleep (By similarity). {ECO:0000250|UniProtKB:P63141, ECO:0000250|UniProtKB:P63142, ECO:0000269|PubMed:112111111, ECO:0000269|PubMed:19912772, ECO:0000269|PubMed:20220134, ECO:0000269|PubMed:23769686, ECO:0000269|PubMed:8495559, ECO:0000305}.

Molecular Weight:

56.7 kDa

UniProt:

P16389

Application Details

Application Notes:

In addition to the applications listed above we expect the protein to work for functional studies as well. As the protein has not been tested for functional studies yet we cannot offer a guarantee though.

Comment:

ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require post-translational modifications.

During lysate production, the cell wall and other cellular components that are not required for protein production are removed, leaving only the protein production machinery and the mitochondria to drive the reaction. During our lysate completion steps, the additional components needed for protein production (amino acids, cofactors, etc.) are added to produce something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!

Restrictions:

For Research Use only

Handling

Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.

\vdash	land	lına
	iaria	шц

Expiry Date:

12 months