

Datasheet for ABIN3132338

COX1 Protein (AA 1-514) (Strep Tag)

Go to Product page

_				
()	ve.	rv/	101	Λ

Quantity:	250 μg
Target:	COX1
Protein Characteristics:	AA 1-514
Origin:	Mouse
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This COX1 protein is labelled with Strep Tag.
Application:	ELISA, SDS-PAGE (SDS), Western Blotting (WB)

Product Details	
Brand:	AliCE®
Sequence:	MFINRWLFST NHKDIGTLYL LFGAWAGMVG TALSILIRAE LGQPGALLGD DQIYNVIVTA
	HAFVMIFFMV MPMMIGGFGN WLVPLMIGAP DMAFPRMNNM SFWLLPPSFL LLLASSMVEA
	GAGTGWTVYP PLAGNLAHAG ASVDLTIFSL HLAGVSSILG AINFITTIIN MKPPAMTQYQ
	TPLFVWSVLI TAVLLLLSLP VLAAGITMLL TDRNLNTTFF DPAGGGDPIL YQHLFWFFGH
	PEVYILILPG FGIISHVVTY YSGKKEPFGY MGMVWAMMSI GFLGFIVWAH HMFTVGLDVD
	TRAYFTSATM IIAIPTGVKV FSWLATLHGG NIKWSPAMLW ALGFIFLFTV GGLTGIVLSN
	SSLDIVLHDT YYVVAHFHYV LSMGAVFAIM AGFVHWFPLF SGFTLDDTWA KAHFAIMFVG
	VNMTFFPQHF LGLSGMPRRY SDYPDAYTTW NTVSSMGSFI SLTAVLIMIF MIWEAFASKR
	EVMSVSYAST NLEWLHGCPP PYHTFEEPTY VKVK
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression
	system, a different complexity of the protein could make another tag necessary. In case you

have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	COX1
Alternative Name:	Mtco1 (COX1 Products)
Background:	Cytochrome c oxidase subunit 1 (EC 7.1.1.9) (Cytochrome c oxidase polypeptide I),FUNCTION:
	Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron
	transport chain which drives oxidative phosphorylation. The respiratory chain contains 3
	multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c
	oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase
	(complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to
	molecular oxygen, creating an electrochemical gradient over the inner membrane that drives
	transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of
	the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from
	reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear
	copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a
	binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular
	oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons
	from the mitochondrial matrix. {ECO:0000250 UniProtKB:P00401}.
Molecular Weight:	56.9 kDa
UniProt:	P00397
Pathways:	Proton Transport
Application Details	
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies
	as well. As the protein has not been tested for functional studies yet we cannot offer a guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce
	even the most difficult-to-express proteins, including those that require post-translational
	modifications.
	modifications. During lysate production, the cell wall and other cellular components that are not required for
	During lysate production, the cell wall and other cellular components that are not required for
	During lysate production, the cell wall and other cellular components that are not required for protein production are removed, leaving only the protein production machinery and the

Application Details

	needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months