

Datasheet for ABIN3134829

RELB Protein (AA 1-558) (Strep Tag)

Go to Product page

_				
()	ve.	rv/	101	Λ

Quantity:	250 μg
Target:	RELB
Protein Characteristics:	AA 1-558
Origin:	Mouse
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This RELB protein is labelled with Strep Tag.
Application:	Western Blotting (WB), SDS-PAGE (SDS), ELISA

Product Details	
Brand:	AliCE®
Sequence:	MPSRRAARES APELGALGSS DLSSLSLTVS RTTDELEIID EYIKENGFGL DGTQLSEMPR
	LVPRGPASLS SVTLGPAAPP PPATPSWSCT LGRLVSPGPC PRPYLVITEQ PKQRGMRFRY
	ECEGRSAGSI LGESSTEASK TLPAIELRDC GGLREVEVTA CLVWKDWPHR VHPHSLVGKD
	CTDGVCRVRL RPHVSPRHSF NNLGIQCVRK KEIEAAIERK IQLGIDPYNA GSLKNHQEVD
	MNVVRICFQA SYRDQQGHLH RMDPILSEPV YDKKSTNTSE LRICRINKES GPCTGGEELY
	LLCDKVQKED ISVVFSTASW EGRADFSQAD VHRQIAIVFK TPPYEDLEIS EPVTVNVFLQ
	RLTDGVCSEP LPFTYLPRDH DSYGVDKKRK RGLPDVLGEL SSSDPHGIES KRRKKKPVFL
	DHFLPGHSSG LFLPPSALQP ADSDFFPASI SLPGLEPPGG PDLLDDGFAY DPSAPTLFTM
	LDLLPPAPPL ASAVVGSGGA GATVVESSGP EPLSLDSFAA PGPGDVGTAS LVGSNMFPNQ
	YREAAFGGGL LSPGPEAT
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	RELB
Alternative Name:	Relb (RELB Products)
Background:	Transcription factor RelB,FUNCTION: NF-kappa-B is a pleiotropic transcription factor which is
	present in almost all cell types and is involved in many biological processed such as
	inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B
	is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins
	RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B
	sites in the DNA of their target genes and the individual dimers have distinct preferences for
	different kappa-B sites that they can bind with distinguishable affinity and specificity. Different
	dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is
	controlled by various mechanisms of post-translational modification and subcellular
	compartmentalization as well as by interactions with other cofactors or corepressors. NF-
	kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of
	the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is
	phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently
	degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF
	kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB
	neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the
	presence of NFKB2/p49 (By similarity). As a member of the NUPR1/RELB/IER3 survival
	pathway, may allow the development of pancreatic intraepithelial neoplasias. Regulates the
	circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1
	heterodimer in a CRY1/CRY2 independent manner. Increased repression of the heterodimer is
	seen in the presence of NFKB2/p52. Is required for both T and B lymphocyte maturation and
	function (By similarity). {ECO:0000250 UniProtKB:Q01201, ECO:0000269 PubMed:22565310,
	ECO:0000269 PubMed:22894897}.
Molecular Weight:	60.3 kDa
UniProt:	Q04863
Pathways:	NF-kappaB Signaling, RTK Signaling
Application Details	
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies
	as well. As the protein has not been tested for functional studies yet we cannot offer a
	guarantee though.

Application Details

\sim	\cap n			_+.
	Λìrr	1 r r	1 🗀 r	11.

ALICE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require post-translational modifications.

During lysate production, the cell wall and other cellular components that are not required for protein production are removed, leaving only the protein production machinery and the mitochondria to drive the reaction. During our lysate completion steps, the additional components needed for protein production (amino acids, cofactors, etc.) are added to produce something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!

Restrictions:

For Research Use only

Handling

Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months