

Datasheet for ABIN3135341

PAK3 Protein (PAK3) (AA 1-559) (Strep Tag)

Go to Product page

()	ve	r\/i	۱۸/
\cup	V C	1 / 1	 ٧V

Quantity:	250 μg
Target:	PAK3
Protein Characteristics:	AA 1-559
Origin:	Mouse
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This PAK3 protein is labelled with Strep Tag.
Application:	ELISA, Western Blotting (WB), SDS-PAGE (SDS)

Application:	ELISA, Western Blotting (WB), SDS-PAGE (SDS)		
Product Details	oduct Details		
Brand:	AliCE®		
Sequence:	MSDSLDNEEK PPAPPLRMNS NNRDSSALNH SSKPLPMAPE EKNKKARLRS IFPGGGDKTN		
	KKKEKERPEI SLPSDFEHTI HVGFDAVTGE FTPDLYGSQM CPGKLPEGIP EQWARLLQTS		
	NITKLEQKKN PQAVLDVLKF YDSKETVNNQ KYMSFTSGDK SAHGYIAAHQ SNTKTASEPP		
	LAPPVSEEED EEEEEEEDDN EPPPVIAPRP EHTKSIYTRS VVESIASPAA PNKEDIPPSA		
	ENANSTTLYR NTDRQRKKSK MTDEEILEKL RSIVSVGDPK KKYTRFEKIG QGASGTVYTA		
	LDIATGQEVA IKQMNLQQQP KKELIINEIL VMRENKNPNI VNYLDSYLVG DELWVVMEYL		
	AGGSLTDVVT ETCMDEGQIA AVCRECLQAL DFLHSNQVIH RDIKSDNILL GMDGSVKLTD		
	FGFCAQITPE QSKRSTMVGT PYWMAPEVVT RKAYGPKVDI WSLGIMAIEM VEGEPPYLNE		
	NPLRALYLIA TNGTPELQNP ERLSAVFRDF LNRCLEMDVD RRGSAKELLQ HPFLKLAKPL		
	SSLTPLIIAA KEAIKNSSR		
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression		

system, a different complexity of the protein could make another tag necessary. In case you have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- · The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made

Target Details

Target:	PAK3		
Alternative Name:	Pak3 (PAK3 Products)		
Background:	Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (CDC42/RAC effector kinase		
	PAK-B) (p21-activated kinase 3) (PAK-3),FUNCTION: Serine/threonine protein kinase that plays		
	a role in a variety of different signaling pathways including cytoskeleton regulation, cell		
	migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as		
	synapse formation and plasticity (PubMed:25851601). Acts as a downstream effector of the		
	small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results		
	in a conformational change and a subsequent autophosphorylation on several serine and/or		
	threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target		
	MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally,		
	phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thir		
	myofilaments. May also be involved in early neuronal development. In hippocampal neurons,		
	necessary for the formation of dendritic spines and excitatory synapses, this function is		
	dependent on kinase activity and may be exerted by the regulation of actomyosin contractility		
	through the phosphorylation of myosin II regulatory light chain (MLC) (PubMed:15800193).		
	{ECO:0000269 PubMed:12242269, ECO:0000269 PubMed:15574732,		
	ECO:0000269 PubMed:15800193, ECO:0000269 PubMed:17537723,		
	ECO:0000269 PubMed:20540949, ECO:0000269 PubMed:25851601}.		
Molecular Weight:	62.4 kDa		
UniProt:	Q61036		
Application Details			
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies		
	as well. As the protein has not been tested for functional studies yet we cannot offer a		
	guarantee though.		
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from		
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce		
	even the most difficult-to-express proteins, including those that require post-translational		
	modifications.		
	During lysate production, the cell wall and other cellular components that are not required for		
	protein production are removed, leaving only the protein production machinery and the		

Application Details

	components needed for protein production (amino acids, cofactors, etc.) are added to produce something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!	
Restrictions:	For Research Use only	
Handling		
Format:	Liquid	
Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.	
Handling Advice:	Avoid repeated freeze-thaw cycles.	
Storage:	-80 °C	
Storage Comment:	Store at -80°C.	
Expiry Date:	12 months	