

Datasheet for ABIN3136707 CTH Protein (AA 1-398) (Strep Tag)

Overview

Quantity:	1 mg
Target:	CTH
Protein Characteristics:	AA 1-398
Origin:	Mouse
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This CTH protein is labelled with Strep Tag.
Application:	ELISA, Western Blotting (WB), SDS-PAGE (SDS)

Product Details	
Brand:	AliCE®
Sequence:	MQKDASLSGF LPSFQHFATQ AIHVGQEPEQ WNSRAVVLPI SLATTFKQDF PGQSSGFEYS
	RSGNPTRNCL EKAVAALDGA KHSLAFASGL AATITITHLL KAGDEIICMD EVYGGTNRYF
	RRVASEFGLK ISFVDCSKTK LLEAAITPQT KLVWIETPTN PTLKLADIGA CAQIVHKRGD
	IILVVDNTFM SAYFQRPLAL GADICMCSAT KYMNGHSDVV MGLVSVNSDD LNSRLRFLQN
	SLGAVPSPFD CYLCCRGLKT LQVRMEKHFK NGMAVARFLE TNPRVEKVVY PGLPSHPQHE
	LAKRQCSGCP GMVSFYIKGA LQHAKAFLKN LKLFTLAESL GGYESLAELP AIMTHASVPE
	KDRATLGIND TLIRLSVGLE DEQDLLEDLD RALKAAHP
	Sequence without tag. The proposed Strep-Tag is based on experience s with the expression
	system, a different complexity of the protein could make another tag necessary. In case you
	have a special request, please contact us.
Characteristics:	Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- · State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- The protein's absorbance will be measured against its specific reference buffer.
- · We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).
Grade:	custom-made
Target Details	
Target:	CTH

Alternative Name:	Cth (CTH Products)
Background:	Cystathionine gamma-lyase (CGL) (CSE) (EC 4.4.1.1) (Cysteine desulfhydrase) (Cysteine-protein
	sulfhydrase) (Gamma-cystathionase) (Homocysteine desulfhydrase) (EC 4.4.1.2),FUNCTION:
	Catalyzes the last step in the trans-sulfuration pathway from L-methionine to L-cysteine in a
	pyridoxal-5'-phosphate (PLP)-dependent manner, which consists on cleaving the L,L-
	cystathionine molecule into L-cysteine, ammonia and 2-oxobutanoate. Part of the L-cysteine
	derived from the trans-sulfuration pathway is utilized for biosynthesis of the ubiquitous
	antioxidant glutathione. Besides its role in the conversion of L-cystathionine into L-cysteine, it
	utilizes L-cysteine and L-homocysteine as substrates (at much lower rates than L,L-
	cystathionine) to produce hydrogen sulfide (H2S). In vitro, it converts two L-cysteine molecules
	into lanthionine and H2S, and two L-homocysteine molecules to homolanthionine and H2S,
	which can be particularly relevant under conditions of severe hyperhomocysteinemia.
	Lanthionine and homolanthionine are structural homologs of L,L-cystathionine that differ by the
	absence or presence of an extra methylene group, respectively (By similarity). Acts as a
	cysteine-protein sulfhydrase by mediating sulfhydration of target proteins: sulfhydration
	consists of converting -SH groups into -SSH on specific cysteine residues of target proteins
	such as GAPDH, PTPN1 and NF-kappa-B subunit RELA, thereby regulating their function
	(PubMed:19903941, PubMed:22244329). By generating the gasotransmitter H2S, it participates
	in a number of physiological processes such as vasodilation, bone protection, and
	inflammation (PubMed:18948540) (By similarity). Plays an essential role in myogenesis by
	contributing to the biogenesis of H2S in skeletal muscle tissue (PubMed:33826201). Can also
	accept homoserine as substrate (By similarity). Catalyzes the elimination of
	selenocystathionine (which can be derived from the diet) to yield selenocysteine, ammonia and
	2-oxobutanoate (By similarity). {ECO:0000250 UniProtKB:P18757,
	ECO:0000250 UniProtKB:P32929, ECO:0000269 PubMed:18948540,
	ECO:0000269 PubMed:19903941, ECO:0000269 PubMed:22244329,
	ECO:0000269 PubMed:33826201}.
Molecular Weight:	43.6 kDa
UniProt:	Q8VCN5
Pathways:	ER-Nucleus Signaling, Warburg Effect
Application Details	
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies
	as well. As the protein has not been tested for functional studies yet we cannot offer a

Application Details

Handling Advice:

Storage Comment:

Storage:

Expiry Date:

Application Details	
	guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from
	Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce
	even the most difficult-to-express proteins, including those that require post-translational
	modifications.
	During lysate production, the cell wall and other cellular components that are not required for
	protein production are removed, leaving only the protein production machinery and the
	mitochondria to drive the reaction. During our lysate completion steps, the additional
	components needed for protein production (amino acids, cofactors, etc.) are added to produce
	something that functions like a cell, but without the constraints of a living system - all that's
	needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	The buffer composition is at the discretion of the manufacturer.
	Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.

Avoid repeated freeze-thaw cycles.

-80 °C

Store at -80°C.

12 months