

Datasheet for ABIN3137635

OASL2 Protein (AA 1-508) (Strep Tag)

Go to Product page

()	ve	rvi	6	W
\sim	v C	1 V I	\sim	v v

Quantity:	250 μg
Target:	OASL2
Protein Characteristics:	AA 1-508
Origin:	Mouse
Source:	Cell-free protein synthesis (CFPS)
Protein Type:	Recombinant
Purification tag / Conjugate:	This OASL2 protein is labelled with Strep Tag.
Application:	ELISA, SDS-PAGE (SDS), Western Blotting (WB)

Product Details		
AliCE®		
MDPFPDLYAT PGDSLDHFLE HSLQPQRDWK EEGQDAWERI ERFFREQCFR DELLLDQEVR		
VIKVVKGGSS GKGTTLNHRS DQDMILFLSC FSSFEEQARN REVVISFIKK RLIHCSRSLA		
YNIIVLTHRE GKRAPRSLTL KVQSRKTDDI IWMDILPAYD ALGPISRDSK PAPAIYETLI		
RSKGYPGDFS PSFTELQRHF VKTRPVKLKN LLRLVKFWYL QCLRRKYGRG AVLPSKYALE		
LLTIYAWEMG TESSDSFNLD EGFVAVMELL VNYRDICIYW TKYYNFQNEV VRNFLKKQLK		
GDRPIILDPA DPTNNLGRRK GWEQVAAEAA FCLLQVCCTT VGPSERWNVQ RARDVQVRVK		
QTGTVDWTLW TNPYSPIRKM KAEIRREKNF GGELRISFQE PGGERQLLSS RKTLADYGIF		
SKVNIQVLET FPPEILVFVK YPGGQSKPFT IDPDDTILDL KEKIEDAGGP CAEDQVLLLD		
DEELEDDESL KELEIKDCDT IILIRVID		
Sequence without tag. The proposed Strep-Tag is based on experience s with the expression		
system, a different complexity of the protein could make another tag necessary. In case you		

have a special request, please contact us.

Characteristics:

Key Benefits:

- Made in Germany from design to production by highly experienced protein experts.
- · Protein expressed with ALiCE® and purified in one-step affinity chromatography
- These proteins are normally active (enzymatically functional) as our customers have reported (not tested by us and not guaranteed).
- State-of-the-art algorithm used for plasmid design (Gene synthesis).

This protein is a **made-to-order protein** and will be made for the first time for your order. Our experts in the lab try to ensure that you receive soluble protein.

The big advantage of ordering our **made-to-order proteins** in comparison to ordering custom made proteins from other companies is that there is no financial obligation in case the protein cannot be expressed or purified.

Expression System:

- ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v.. This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require posttranslational modifications.
- During lysate production, the cell wall and other cellular components that are not required for
 protein production are removed, leaving only the protein production machinery and the
 mitochondria to drive the reaction. During our lysate completion steps, the additional
 components needed for protein production (amino acids, cofactors, etc.) are added to
 produce something that functions like a cell, but without the constraints of a living system all that's needed is the DNA that codes for the desired protein!

Concentration:

- The concentration of our recombinant proteins is measured using the absorbance at 280nm.
- The protein's absorbance will be measured against its specific reference buffer.
- We use the Expasy's ProtParam tool to determine the absorption coefficient of each protein.

Purification:	One-step Strep-tag purification of proteins expressed in Almost Living Cell-Free Expression System (AliCE®).	
Purity:	> 70-80 % as determined by SDS PAGE, Western Blot and analytical SEC (HPLC).	
Grade:	custom-made	

Target Details

Target:	OASL2
Alternative Name:	Oasl2
Background:	2'-5'-oligoadenylate synthase-like protein 2 (EC 2.7.7.84) (54 kDa 2'-5'-oligoadenylate synthase-like protein) (p54 OASL) (M1204),FUNCTION: Interferon-induced, dsRNA-activated antiviral enzyme which plays a critical role in cellular innate antiviral response. Synthesizes oligomers of 2'-5'-oligoadenylates (2-5A) from ATP which then bind to the inactive monomeric form of ribonuclease L (RNase L) leading to its dimerization and subsequent activation. Activation of RNase L leads to degradation of cellular as well as viral RNA, resulting in the inhibition of protein synthesis, thus terminating viral replication. Can mediate the antiviral effect via the classical RNase L-dependent pathway or an alternative antiviral pathway independent of RNase L. {ECO:0000269 PubMed:12396720, ECO:0000269 PubMed:12799444}.
Molecular Weight:	58.8 kDa
UniProt:	Q9Z2F2
Application Details	
Application Notes:	In addition to the applications listed above we expect the protein to work for functional studies as well. As the protein has not been tested for functional studies yet we cannot offer a guarantee though.
Comment:	ALiCE®, our Almost Living Cell-Free Expression System is based on a lysate obtained from Nicotiana tabacum c.v This contains all the protein expression machinery needed to produce even the most difficult-to-express proteins, including those that require post-translational modifications. During lysate production, the cell wall and other cellular components that are not required for protein production are removed, leaving only the protein production machinery and the mitochondria to drive the reaction. During our lysate completion steps, the additional components needed for protein production (amino acids, cofactors, etc.) are added to produce something that functions like a cell, but without the constraints of a living system - all that's needed is the DNA that codes for the desired protein!
Restrictions:	For Research Use only
Handling	

Handling

Buffer:	The buffer composition is at the discretion of the manufacturer. Standard Storage Buffer: PBS pH 7.4, 10 % Glycerol Might differ depending on protein.
Handling Advice:	Avoid repeated freeze-thaw cycles.
Storage:	-80 °C
Storage Comment:	Store at -80°C.
Expiry Date:	12 months