

Datasheet for ABIN371280

anti-CD1a antibody (FITC)

Go to Product page

0				

Quantity:	0.5 mg
Target:	CD1a
Reactivity:	Pig
Host:	Mouse
Clonality:	Monoclonal
Conjugate:	This CD1a antibody is conjugated to FITC
Application:	Flow Cytometry (FACS)

Product Details

Clone:	04-07-76
Isotype:	IgG2a
Specificity:	This antibody is specific for Porcine CD1 (Mr 43-49 kDa).
Characteristics:	Synonyms: T6/Leu-6, hTa1, T-cell surface glycoprotein CD1a, T-cell surface antigen T6/Leu-6, hTa1thymocyte antigen

Target Details

Target:	CD1a
Alternative Name:	CD1a (CD1a Products)
Background:	All CD1 Molecules, except CD1e, are cell surface glycoproteins that are structurally related to
	the MHC molecules, however, in distinction, CD1 proteins are essentially non polymorphic. CD1
	has considerable structural homology with both MHC class I and class II molecules, and

Target	1 10+01	
	$I \cup I \cap A \cup A$	_
Taract	$\mathcal{L} \cup \mathcal{L} \cup $	-

	CD1 Molecules are involved in T cell activation. In contrast to MHC, however, CD1 Molecules
	appear to present predominantly non peptide molecules originating from lipids and
	glycolipids.Synonyms: T-cell surface antigen T6/Leu-6, T-cell surface glycoprotein CD1a,
	T6/Leu-6, hTa1, hTa1 thymocyte antigen
Gene ID:	396785
UniProt:	Q9XS72
Pathways:	Regulation of Leukocyte Mediated Immunity, Positive Regulation of Immune Effector Process
Application Details	
Application Notes:	Flow Cytometry: < / = 1 μg/10 ⁶ cells.
	Other applications not tested.
	Optimal dilutions are dependent on conditions and should be determined by the user.
Restrictions:	For Research Use only
Handling	
Concentration:	0.5 mg/mL
Buffer:	PBS containing 0.09 % Sodium Azide as preservative.
Preservative:	Sodium azide
Precaution of Use:	This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which
	should be handled by trained staff only.
Storage:	4 °C/-20 °C
Storage Comment:	Store the antibody undiluted at 2-8 °C for one month or in (aliquots) at -20 °C for longer. This
	product is photosensitive and should be protected from light. Avoid repeated freezing and
	thawing.
	Shelf life: one year from despatch.
Expiry Date:	12 months
Publications	
Product cited in:	Lourido, Calamia, Fernández-Puente, Mateos, Oreiro, Blanco, Ruiz-Romero: "Secretome analys
	of human articular chondrocytes unravels catabolic effects of nicotine on the joint." in:
	Proteomics. Clinical applications, Vol. 10, Issue 6, pp. 671-80, (2017) (PubMed).

Seifert, Werba, Tiwari, Giao Ly, Alothman, Alqunaibit, Avanzi, Barilla, Daley, Greco, Torres-Hernandez, Pergamo, Ochi, Zambirinis, Pansari, Rendon, Tippens, Hundeyin, Mani, Hajdu, Engle, Miller: "The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression." in: **Nature**, Vol. 532, Issue 7598, pp. 245-9, (2016) (PubMed).

Polioudaki, Agelaki, Chiotaki, Politaki, Mavroudis, Matikas, Georgoulias, Theodoropoulos et al.: "Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic ..." in: **BMC cancer**, Vol. 15, pp. 399, (2016) (PubMed).

Kim, Son, Bae, Lee, Lee, Jo, Kim, Yang: "Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice." in: **Oncology reports**, Vol. 34, Issue 1, pp. 147-54, (2016) (PubMed).

Ohkubo, Kodama, Muraoka, Hitotsumachi, Yoshimura, Kitade, Hashimoto, Ito, Gomori, Takahashi, Shibata, Kanoh, Yonekura: "TAS-116, a highly selective inhibitor of heat shock protein 90α and β , demonstrates potent antitumor activity and minimal ocular toxicity in preclinical models." in: **Molecular cancer therapeutics**, Vol. 14, Issue 1, pp. 14-22, (2015) (PubMed).

There are more publications referencing this product on: Product page

Images

Flow Cytometry

Image 1.