antibodies -online.com

anti-ATG7 antibody (N-Term)

Publications

Go to Product page

Overview	
Quantity:	400 μL
Target:	ATG7
Binding Specificity:	AA 22-51, N-Term
Reactivity:	Human, Mouse
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	This ATG7 antibody is un-conjugated

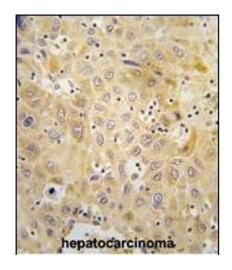
Western Blotting (WB), Immunohistochemistry (Paraffin-embedded Sections) (IHC (p))

Product Details	
Immunogen:	This ATG7 antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 22-51 amino acids from the N-terminal region of human ATG7.
Clone:	RB7467
Isotype:	Ig Fraction
Predicted Reactivity:	Rat
Purification:	This antibody is purified through a protein A column, followed by peptide affinity purification.

Target Details

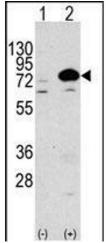
Application:

Target:	ATG7
Alternative Name:	ATG7 (ATG7 Products)


Target Details

Background:	Macroautophagy is the major inducible pathway for the general turnover of cytoplasmic				
	constituents in eukaryotic cells, it is also responsible for the degradation of active cytoplasmic				
	enzymes and organelles during nutrient starvation. Macroautophagy involves the formation of				
	double-membrane bound autophagosomes which enclose the cytoplasmic constituent				
	targeted for degradation in a membrane bound structure, which then fuse with the lysosome				
	(or vacuole) releasing a single-membrane bound autophagic bodies which are then degraded				
	within the lysosome (or vacuole). APG7 functions as an E1 enzyme essential for				
	multisubstrates such as GABARAPL1 and ATG12. APG3L is an E2-like conjugating enzyme				
	facilitating covalent binding of APG8 (MAP1LC3) to phosphatidylethanolamine (PE). APG7 (an				
	E1-like enzyme) facilitates this reaction by forming an E1-E2 complex with APG3. Formation of				
	the PE conjugate is essential for autophagy.				
Molecular Weight:	77960				
Gene ID:	10533				
NCBI Accession:	NP_001129503, NP_001138384, NP_006386				
UniProt:	095352				
Pathways:	Response to Water Deprivation, Autophagy				
Application Details					
Application Notes:	WB: 1:1000. WB: 1:1000. IHC-P: 1:50~100. IHC-P: 1:50~100				
Restrictions:	For Research Use only				
Handling					
Format:	Liquid				
Buffer:	Purified polyclonal antibody supplied in PBS with 0.09 % (W/V) sodium azide.				
Preservative:	Sodium azide				
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which				
	should be handled by trained staff only.				
Storage:	4 °C,-20 °C				
Storage Comment:	Maintain refrigerated at 2-8 °C for up to 6 months. For long term storage store at -20 °C in small				
	aliquots to prevent freeze-thaw cycles.				
Expiry Date:	6 months				

Product cited in:


Stegmaier, Wong, Ross, Chow, Peck, Wright, Lessnick, Kung, Golub: "Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma." in: **PLoS medicine**, Vol. 4, Issue 4, pp. e122, (2007) (PubMed).

Images

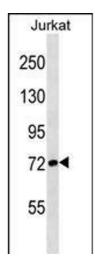

Immunohistochemistry (Paraffin-embedded Sections)

Image 1. Formalin-fixed and paraffin-embedded human hepatocarcinoma tissue reacted with Autophagy G7L Antibody (N-term) 1813a , which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry, clinical relevance has not been evaluated.

Western Blotting

Image 2. Western blot analysis of anti-Autophagy G7L Antibody (N-term) 1813a in 293 cell line lysates transiently transfected with the ATG7 gene ($3 \mu g$ /lane). G7L (arrow) was detected using the purified Pab.

Western Blotting

Image 3. G7L Antibody (E37) 1813a western blot analysis in Jurkat cell line lysates (35 μ g/lane). This demonstrates the G7L antibody detected the G7L protein (arrow).

Please	check the product	t details page fo	r more images.	Overall 4 imag	es are available f	or ABIN388520.	