antibodies -online.com

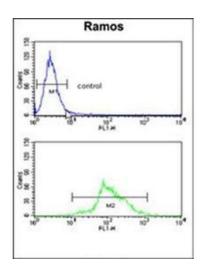
anti-HADHA antibody (C-Term)

3 Images

Go to Product page

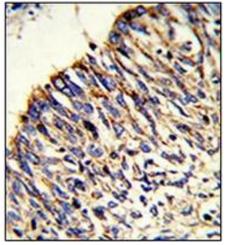
Overview

Quantity:	0.4 mL
Target:	HADHA
Binding Specificity:	AA 734-763, C-Term
Reactivity:	Human, Mouse
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	This HADHA antibody is un-conjugated
Application:	Western Blotting (WB), Flow Cytometry (FACS), Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)), Enzyme Immunoassay (EIA)
Product Details	
Immunogen:	KLH conjugated synthetic peptide between 734~763 amino acids from the C-terminal region of human HADHA
Specificity:	This antibody recognizes Human and Mouse HADHA (C-term).
Cross-Reactivity (Details):	Species reactivity (tested):Human and Mouse.
Purification:	Protein A Chromatography, followed by peptide affinity purification
Target Details	
Target:	HADHA
Alternative Name:	HADHA (HADHA Products)


Target Details

Mitochondrial Trifunctional Protein (TFP) is a multienzyme complex of the beta-oxidation cycle. TFP deficiency is a clinically heterogeneous disorder with phenotypes of different severity. The spectrum of diseases range from severe neonatal/infantile cardiomyopathy and early death to mild chronic progressive sensorimotor poly-neuropathy with episodic rhabdomyolysis. Human TFP is an octomer composed of four alpha-subunits and four beta-subunits. Mutations in either subunits may result in general TFP deficiency with reduced activity of all enzymes. HADHA is the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process ELISA: 1/1,000Western blotting: 1/100approx. 1/500.
spectrum of diseases range from severe neonatal/infantile cardiomyopathy and early death to mild chronic progressive sensorimotor poly-neuropathy with episodic rhabdomyolysis. Human TFP is an octomer composed of four alpha-subunits and four beta-subunits. Mutations in either subunits may result in general TFP deficiency with reduced activity of all enzymes. HADHA is the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
mild chronic progressive sensorimotor poly-neuropathy with episodic rhabdomyolysis. Human TFP is an octomer composed of four alpha-subunits and four beta-subunits. Mutations in either subunits may result in general TFP deficiency with reduced activity of all enzymes. HADHA is the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities.Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
TFP is an octomer composed of four alpha-subunits and four beta-subunits. Mutations in either subunits may result in general TFP deficiency with reduced activity of all enzymes. HADHA is the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
subunits may result in general TFP deficiency with reduced activity of all enzymes. HADHA is the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
the alpha subunit of the mitochondrial trifunctional protein, which catalyzes the last three steps of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
of mitochondrial beta-oxidation of long chain fatty acids. The mitochondrial membrane-bound heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities. Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
heterocomplex is composed of four alpha and four beta subunits, with the alpha subunit catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities.Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl- CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
catalyzing the 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase activities.Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl- CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
activities.Synonyms: HADH, Long chain 3-hydroxyacyl-CoA dehydrogenase, Long-chain enoyl-CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
CoA hydratase, TP-alpha, Trifunctional enzyme subunit alpha mitochondrial 3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
3030 NP_000173 P40939 Monocarboxylic Acid Catabolic Process
NP_000173 P40939 Monocarboxylic Acid Catabolic Process
P40939 Monocarboxylic Acid Catabolic Process
Monocarboxylic Acid Catabolic Process
ELISA: 1/1,000Western blotting: 1/100approx. 1/500.
ELISA: 1/1,000Western blotting: 1/100approx. 1/500.
Other applications not tested.
Optimal dilutions are dependent on conditions and should be determined by the user.
For Research Use only
Liquid
0.25 mg/mL
PBS with 0.09 % (W/V) Sodium Azide as preservative
Sodium azide
This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which
should be handled by trained staff only.
Avoid repeated freezing and thawing.

Storage:	4 °C/-20 °C


Storage Comment: Store undiluted at 2-8 °C for one month or (in aliquots) at -20 °C for longer.

Images

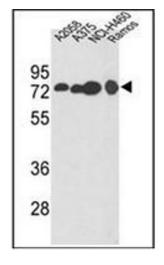

Flow Cytometry

Image 1. Flow cytometry analysis of Ramos cells using HADHA Antibody (C-term) Cat.-No AP17454PU-N (bottom histogram) compared to a negative control cell (top histogram). FITC-conjugated goat-anti-rabbit secondary antibodies were used for the analysis.

Immunohistochemistry (Paraffin-embedded Sections)

Image 2. Formalin-fixed and paraffin-embedded human lung carcinoma reacted with HADHA Antibody (Cterm) followed which was peroxidase-conjugated to the secondary antibody, followed by DAB staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated.

Western Blotting

Image 3. Western blot analysis of HADHA Antibody (C-term) in A2058, A375, NCI-H460, Ramos cell line lysates (35ug/lane). HADHA (arrow) was detected using the purified Pab