antibodies - online.com

anti-GNAS antibody (AA 42-188)

Images

Overview

Quantity:	0.1 mg
Target:	GNAS
Binding Specificity:	AA 42-188
Reactivity:	Human
Host:	Mouse
Clonality:	Monoclonal
Conjugate:	This GNAS antibody is un-conjugated
Application:	Western Blotting (WB), ELISA, Immunohistochemistry (IHC), Flow Cytometry (FACS), Immunocytochemistry (ICC)

Product Details

Immunogen:	Purified recombinant fragment of human GNAS (AA: 42-188) expressed in E. coli.
Clone:	7G6G5
Isotype:	lgG1
Purification:	purified

Target Details

Target:	GNAS
Alternative Name:	GNAS (GNAS Products)
Background:	Description: This locus has a highly complex imprinted expression pattern. It gives rise to

maternally, paternally, and biallelically expressed transcripts that are derived from four alternative promoters and 5' exons. Some transcripts contain a differentially methylated region (DMR) at their 5' exons, and this DMR is commonly found in imprinted genes and correlates with transcript expression. An antisense transcript is produced from an overlapping locus on the opposite strand. One of the transcripts produced from this locus, and the antisense transcript, are paternally expressed noncoding RNAs, and may regulate imprinting in this region. In addition, one of the transcripts contains a second overlapping ORF, which encodes a structurally unrelated protein - Alex. Alternative splicing of downstream exons is also observed, which results in different forms of the stimulatory G-protein alpha subunit, a key element of the classical signal transduction pathway linking receptor-ligand interactions with the activation of adenylyl cyclase and a variety of cellular reponses. Multiple transcript variants encoding different isoforms have been found for this gene. Mutations in this gene result in pseudohypoparathyroidism type 1a, pseudohypoparathyroidism type 1b, Albright hereditary osteodystrophy, pseudopseudohypoparathyroidism, McCune-Albright syndrome, progressive osseus heteroplasia, polyostotic fibrous dysplasia of bone, and some pituitary tumors. [provided by RefSeq, Aug 2012],

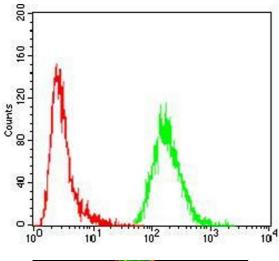
Aliases: AHO, GSA, GSP, POH, GPSA, NESP, GNAS1, PHP1A, PHP1B, PHP1C, C20orf45

Molecular Weight:	68 kDa
Gene ID:	2778
HGNC:	2778

Thyroid Hormone Synthesis, cAMP Metabolic Process, Myometrial Relaxation and Contraction, Embryonic Body Morphogenesis

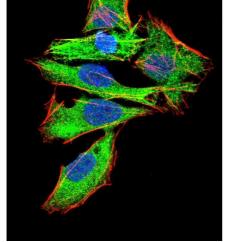
Application Details

Application Notes:	ELISA: 1:10000, WB: 1:500 - 1:2000, IHC: , ICC: 1:200 - 1:1000, FCM: 1:200 - 1:400
Restrictions:	For Research Use only


Handling

Pathways:

Format:	Liquid
Buffer:	Purified antibody in PBS with 0.05 % sodium azide
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which


	should be handled by trained staff only.
Storage:	4 °C/-20 °C
Storage Comment:	4°C, -20°C for long term storage

Images

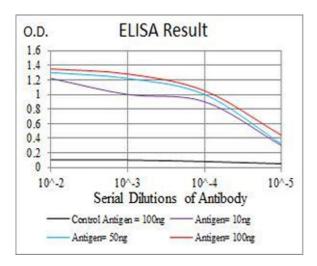

Flow Cytometry

Image 1. Flow cytometric analysis of MCF-7 cells using GNAS mouse mAb (green) and negative control (red).

Immunofluorescence

Image 2. Immunofluorescence analysis of Hela cells using GNAS mouse mAb (green). Blue: DRAQ5 fluorescent DNA dye. Red: Actin filaments have been labeled with Alexa Fluor- 555 phalloidin. Secondary antibody from Fisher (Cat#: 35503)

ELISA

Image 3. Black line: Control Antigen (100 ng), Purple line: Antigen(10 ng), Blue line: Antigen (50 ng), Red line: Antigen (100 ng),

Please check the product details page for more images. Overall 5 images are available for ABIN5542321.