

Datasheet for ABIN5706745

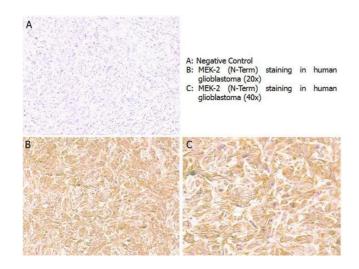
anti-MEK2 antibody (C-Term)

Overview

Quantity:	100 μg
Target:	MEK2 (MAP2K2)
Binding Specificity:	C-Term
Reactivity:	Human
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	This MEK2 antibody is un-conjugated
Application:	Western Blotting (WB), Immunohistochemistry (IHC), ELISA

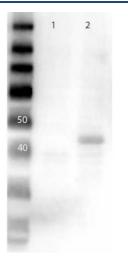
Product Details

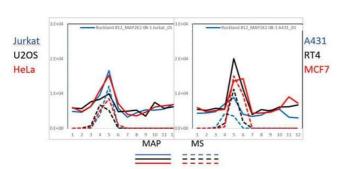
Purpose:	MEK2 C-Term Antibody
Immunogen:	Immunogen: Anti-MEK2 Antibody was produced in rabbits by repeated immunizations with synthetic peptide corresponding to amino acid residues near the C-terminus human MEK2 protein conjugated to KLH. Immunogen Type: Conjugated Peptide
Isotype:	IgG
Cross-Reactivity (Details):	This affinity purified antibody is directed against human MEK2 protein.
Characteristics:	Synonyms: rabbit anti-MEK2 antibody, Dual specificity mitogen-activated protein kinase kinase 2, MAP kinase kinase 2, MAPKK 2, MAP2K2, MEK, MEK 2, MKK2, PRKMK2, CFC4, MEK-2, ERK activator kinase 2, MAPK/ERK kinase 2
Purification:	Anti-MEK2 antibody was prepared from monospecific antiserum by immunoaffinity


Product Details

	chromatography using synthetic peptide coupled to agarose beads.
Sterility:	Sterile filtered
Target Details	
Target:	MEK2 (MAP2K2)
Alternative Name:	MAP2K2 (MAP2K2 Products)
Background:	Background: MEK2 antibodies detect the MEK2 isoform. Mitogen-activated protein kinase
	kinase 2, also known as MEK2 or MKK2, is an integral component of the MAP kinase cascade
	that regulates cell growth and differentiation. This pathway also plays a key role in synaptic
	plasticity in the brain. Activated MEK 2 acts as a dual specificity kinase phosphorylating both a
	threonine and a tyrosine residue on MAP kinase. MEK1 and MEK2 are about 80 % identical to
	each other, and nearly identical within the kinase domain. The MEK2 antibody is ideal for
	investigators involved in Neuroscience, Cell Signaling and Cancer Research.
UniProt:	P36507
Pathways:	MAPK Signaling, RTK Signaling, Fc-epsilon Receptor Signaling Pathway, Neurotrophin Signaling
	Pathway, Activation of Innate immune Response, Toll-Like Receptors Cascades, Signaling of
	Hepatocyte Growth Factor Receptor, BCR Signaling
Application Details	
Application Notes:	Immunohistochemistry Dilution: 1:100
	Application Note: Anti-MEK 2 (RABBIT) antibody has been tested in ELISA, Western Blotting, and
	IHC. Specific conditions of reactivity should be optimized by the end user. Expect a band of
	approximately 44 kDa.
	Western Blot Dilution: 1.0 μg/mL
	ELISA Dilution: 5.0 μg/mL
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Concentration:	1.0 mg/mL
Buffer:	Buffer: 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2

Handling


	Preservative: 0.01 % (w/v) Sodium Azide
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	4 °C,-20 °C
Storage Comment:	Store vial at -20° C prior to opening. This product is stable at 4° C as an undiluted liquid. For extended storage, aliquot contents and freeze at -20° C or below. Avoid cycles of freezing and thawing. Dilute only prior to immediate use.
Expiry Date:	12 months


Images

Immunohistochemistry

Image 1. Immunohistochemistry with anti-MEK2 (N-Term) antibody showing positive staining in human glioblastoma tissue at 20x and 40x (B & C). Staining was performed on Leica Bond system using the standard protocol. Formalin fixed/paraffin embedded tissue sections were subjected to antigen retrieval and then incubated with rabbit anti-MEK2 (N-Term) antibody 600-401-GN8 at 1:100 dilution for 60 minutes. Biotinylated Anti-rabbit secondary antibody was used at 1:200 dilution to detect primary antibody. The reaction was developed using streptavidin-HRP conjugated compact polymer system and visualized with chromogen substrate, 3'3-diamino-benzidine substrate (DAB). The sections were then counterstained with hematoxylin to detect cell nuclei.

Western Blotting

Image 2. Western Blot of Anti-MEK2 C-term Antibody. Lane 1: MEK1 rec lysate. Lane 2: MEK2 rec lysate. Load: 10 μg. Primary Antibody: Anti-MEK2 at 1 μg/mL overnight at 4 °C. Secondary Antibody: Goat Anti-Rabbit Peroxidase Conjugated Antibody (p/n 611-103-122) at 1:40,000 for 30 min at RT. Blocking: BlockOut Universal Blocking buffer (p/n MB-073). Predicted MW: 45 kDa.

Image 3. PAGE-MAP (microsphere affinity proteomics) of Rabbit Anti-MEK2/MAP2K2 Antibody (Catalog Number: 600-401-GQ2, Lot Number: 36409). Antibody array western blot binding of gelfree size separated fractions of multiple lysates (solid lines) and shotgun mass spectroscopy identification (dashed lines) of the target band run in parallel correlate confirming the specificity of this antibody against MEK2/MAP2K2. Data was provided by the Lund-Johansen lab of Oslo University Hospital. For more information on PAGE-MAP/IP-MS identification of antibody specificity and its large-scale implementation for antibody validation see Sikorski et. al., (2018) Nature Methods 15, 909-912.