antibodies -online.com

anti-PTPMT1 antibody (AA 101-201)

\sim			
	$ \backslash / \cap$	r\/I	$\triangle V$

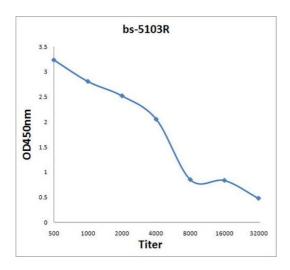
Quantity:	100 μL	
Target:	PTPMT1	
Binding Specificity:	AA 101-201	
Reactivity:	Human	
Host:	Rabbit	
Clonality:	Polyclonal	
Conjugate:	This PTPMT1 antibody is un-conjugated	
Application:	Western Blotting (WB), ELISA, Immunofluorescence (Cultured Cells) (IF (cc)), Immunofluorescence (Paraffin-embedded Sections) (IF (p)), Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)), Immunohistochemistry (Frozen Sections) (IHC (fro))	

Product Details

Immunogen:	KLH conjugated synthetic peptide derived from human PTPMT1
Isotype:	IgG
Cross-Reactivity:	Human
Predicted Reactivity:	Mouse,Rat,Dog,Cow,Pig,Horse
Purification:	Purified by Protein A.

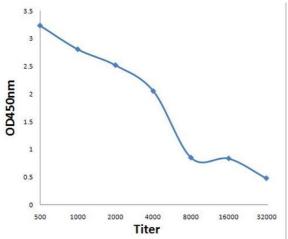
Target Details

Target:	PTPMT1


Target Details

1, MOSP, NB4 apoptosis/dferentiation related protein, ase and protein-tyrosine phosphatase 1, Phosphoinositide lipid protein tyrosine phosphatase mitochondrial 1, Protein-tyrosine pten like phosphatase, PTEN-like phosphatase, PTPM1_HUMAN, sphatase specifically mediates the dephosphorylation of insequently plays a central role in ATP production. It probably has sphorylated on Ser and/or Thr residues compared to less. It is likely to be involved in the regulation of insulin secretion in	
ase and protein-tyrosine phosphatase 1, Phosphoinositide lipid protein tyrosine phosphatase mitochondrial 1, Protein-tyrosine pten like phosphatase, PTEN-like phosphatase, PTPM1_HUMAN, sphatase specifically mediates the dephosphorylation of insequently plays a central role in ATP production. It probably has ephorylated on Ser and/or Thr residues compared to	
protein tyrosine phosphatase mitochondrial 1, Protein-tyrosine pten like phosphatase, PTEN-like phosphatase, PTPM1_HUMAN, sphatase specifically mediates the dephosphorylation of insequently plays a central role in ATP production. It probably has ephorylated on Ser and/or Thr residues compared to	
pten like phosphatase, PTEN-like phosphatase, PTPM1_HUMAN, sphatase specifically mediates the dephosphorylation of insequently plays a central role in ATP production. It probably has ephorylated on Ser and/or Thr residues compared to	
sphatase specifically mediates the dephosphorylation of nsequently plays a central role in ATP production. It probably has sphorylated on Ser and/or Thr residues compared to	
nsequently plays a central role in ATP production. It probably has sphorylated on Ser and/or Thr residues compared to	
nsequently plays a central role in ATP production. It probably has sphorylated on Ser and/or Thr residues compared to	
phorylated on Ser and/or Thr residues compared to	
es. It is likely to be involved in the regulation of insulin secretion in	
ELISA 1:500-1000	
1 μg/μL	
3SA, 0.02 % Proclin300 and 50 % Glycerol.	
ProClin	
a POISONOUS AND HAZARDOUS SUBSTANCE, which should be	

Handling


Storage Comment:	Shipped at 4°C. Store at -20°C for one year. Avoid repeated freeze/thaw cycles.
Expiry Date:	12 months

Images

ELISA

Image 1. Antigen: 2 μ g/100 μ L Primary: Antiserum, 1:500, 1:1000, 1:2000, 1:4000, 1:8000, 1:16000, 1:32000; Secondary: HRP conjugated Rabbit Anti-Goat IgG at 1: 5000; TMB staining Read the data in Microplate Reader by 450nm.

ELISA

Image 2. Antigen: 0.2ug/100ul, Primary: Antiserum, 1:500, 1:1000, 1:2000, 1:4000, 1:8000, 1:16000, 1:32000, Secondary: HRP conjugated Goat-Anti-Rabbit IgG at 1: 5000, TMB staining, Read the data in MicroplateReader by 450nm