

Datasheet for ABIN7127715

Recombinant anti-MTOR antibody (pSer2481)

2 Images

Go to Product page

Overview

Target:

Alternative Name:

Quantity:	100 μL
Target:	MTOR (mTOR)
Binding Specificity:	pSer2481
Reactivity:	Human
Host:	Rabbit
Antibody Type:	Recombinant Antibody
Clonality:	Monoclonal
Conjugate:	This MTOR antibody is un-conjugated
Application:	Western Blotting (WB), ELISA, Immunofluorescence (IF)
Product Details	
Immunogen:	A synthesized peptide derived from human Phospho-MTOR (S2481)
Clone:	3H11
Isotype:	IgG
Cross-Reactivity:	Human
Purification:	Affinity-chromatography
Target Details	

MTOR (mTOR)

MTOR (mTOR Products)

Background:

Background: Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084). Regulates

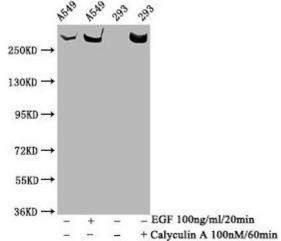
Target Details

osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity).

Aliases: Serine/threonine-protein kinase mTOR, FK506-binding protein 12-rapamycin complex-associated protein 1, FKBP12-rapamycin complex-associated protein, Mammalian target of rapamycin, mTOR, Mechanistic target of rapamycin, Rapamycin and FKBP12 target 1, Rapamycin target protein 1, MTOR, FRAP, FRAP1, FRAP2, RAFT1, RAPT1

UniProt:

P42345


Pathways:

PI3K-Akt Signaling, RTK Signaling, AMPK Signaling, Interferon-gamma Pathway, Fc-epsilon Receptor Signaling Pathway, EGFR Signaling Pathway, Neurotrophin Signaling Pathway, Regulation of Actin Filament Polymerization, Regulation of Muscle Cell Differentiation, Regulation of Cell Size, Skeletal Muscle Fiber Development, Regulation of Carbohydrate Metabolic Process, Autophagy, CXCR4-mediated Signaling Events, BCR Signaling, Warburg Effect

Application Details

Application Notes:	Recommended dilution: WB:1:500-1:5000, IF:1:20-1:200,
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	Rabbit IgG in phosphate buffered saline, pH 7.4, 150 mM NaCl, 0.02 % sodium azide and 50 % glycerol.
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	-20 °C,-80 °C
Storage Comment:	Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.

Immunofluorescence

Image 1. Immunofluorescence staining of Hela cells with ABIN7127715 at 1:100,counter-stained with DAPI. The cells were fixed in 4% formaldehyde, permeabilized using 0.2% Triton X-100 and blocked in 10% normal Goat Serum. The cells were then incubated with the antibody overnight at 4°C. The secondary antibody was Alexa Fluor 488-congugated AffiniPure Goat Anti-Rabbit IgG (H+L).

Western Blotting

Image 2. Western Blot Positive WB detected in A549 whole cell lysate,293 whole cell lysate(treated with Calyculin A or EGF) All lanes Phospho-MTOR antibody at 1.33 μg/mL Secondary Goat polyclonal to rabbit lgG at 1/50000 dilution Predicted band size: 289 KDa Observed band size: 289 KDa