antibodies - online.com

anti-UBQLN4 antibody (AA 300-390)

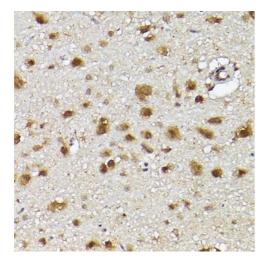
Images

Go to Produc	et page
--------------	---------

<i>ا</i> ۱	1 /	-	rv	10	A / /
u	1//	\vdash	1 \/	1 ←	۱۱/ د
\sim	٧.	\sim	1 V	1	, V I

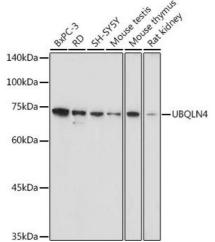
Quantity:	100 μL
Target:	UBQLN4
Binding Specificity:	AA 300-390
Reactivity:	Human
Host:	Rabbit
Clonality:	Polyclonal
Conjugate:	This UBQLN4 antibody is un-conjugated
Application:	Western Blotting (WB), Immunohistochemistry (IHC), Immunofluorescence (IF)

Product Details


Purpose:	UBQLN4 Rabbit pAb
Immunogen:	Recombinant fusion protein containing a sequence corresponding to amino acids 300-390 of human UBQLN4 (NP_064516.2).
Sequence:	QFGNNPFSSL AGNSDSSSSQ PLRTENREPL PNPWSPSPPT SQAPGSGGEG TGGSGTSQVH PTVSNPFGIN AASLGSGMFN SPEMQALLQQ I
Isotype:	IgG
Cross-Reactivity:	Human, Mouse, Rat
Characteristics:	Polyclonal Antibodies
Purification:	Affinity purification

Target Details

Target:	UBQLN4
Alternative Name:	UBQLN4 (UBQLN4 Products)
Background:	Regulator of protein degradation that mediates the proteasomal targeting of misfolded,
	mislocalized or accumulated proteins. Acts by binding polyubiquitin chains of target proteins
	via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like
	domain. Key regulator of DNA repair that represses homologous recombination repair: in
	response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM
	and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to
	MRE11 degradation by the proteasome. MRE11 degradation prevents homologous
	recombination repair, redirecting double-strand break repair toward non-homologous end
	joining (NHEJ. Specifically recognizes and binds mislocalized transmembrane-containing
	proteins and targets them to proteasomal degradation. Collaborates with DESI1/POST in the
	export of ubiquitinated proteins from the nucleus to the cytoplasm. Also plays a role in the
	regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity. Acts as an
	adapter protein that recruits UBQLN1 to the autophagy machinery. Mediates the association o
	UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C and
	may assist in the maturation of autophagosomes to autolysosomes by mediating
	autophagosome-lysosome fusion.,UBQLN4,A1U,A1Up,C1orf6,CIP75,UBIN,Cell Biology &
	Developmental Biology,Ubiquitin,UBQLN4
Molecular Weight:	24kDa/63kDa
Gene ID:	56893
UniProt:	Q9NRR5
Application Details	
Application Notes:	WB,1:500 - 1:2000,IHC,1:50 - 1:200,IF,1:50 - 1:200
Restrictions:	For Research Use only
Handling	
Format:	Liquid
Buffer:	PBS with 0.02 % sodium azide,50 % glycerol, pH 7.3.
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which


	should be handled by trained staff only.
Storage:	-20 °C
Storage Comment:	Store at -20°C. Avoid freeze / thaw cycles.

Images

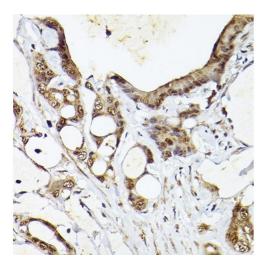

Immunohistochemistry

Image 1. Immunohistochemistry of paraffin-embedded rat brain using UBQLN4 Rabbit pAb (ABIN7271124) at dilution of 1:150 (40x lens).Perform high pressure antigen retrieval with 10 mM citrate buffer pH 6.0 before commencing with IHC staining protocol.

Western Blotting

Image 2. Western blot analysis of extracts of various cell lines, using UBQLN4 antibody (ABIN7271124) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (ABIN1684268 and ABIN3020597) at 1:10000 dilution. Lysates/proteins: 25 μg per lane. Blocking buffer: 3 % nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 60s.

Immunohistochemistry

Image 3. Immunohistochemistry of paraffin-embedded human colon carcinoma using UBQLN4 Rabbit pAb (ABIN7271124) at dilution of 1:150 (40x lens).Perform high pressure antigen retrieval with 10 mM citrate buffer pH 6.0 before commencing with IHC staining protocol.

Please check the product details page for more images. Overall 6 images are available for ABIN7271124.	
i icase sheek the product details page for thore images. Overall of inages are available for Abiliv/2/1124.	