antibodies -online.com

Datasheet for ABIN7318568

HMOX1 Protein

Overview

Quantity:	50 μg
Target:	HMOX1
Origin:	Human
Source:	Escherichia coli (E. coli)
Protein Type:	Recombinant

Product Details

Purpose:	Recombinant Human HO-1/HMOX1 Protein
Sequence:	Met 1-Thr 261
Characteristics:	Recombinant Human Heme Oxygenase 1 is produced by our E.coli expression system and the target gene encoding Met1-Thr261 is expressed.
Purity:	> 95 % as determined by reducing SDS-PAGE.
Endotoxin Level:	< 1.0 EU per µg as determined by the LAL method.

Target Details

Target:	HMOX1
Alternative Name:	HO-1/HMOX1 (HMOX1 Products)
Background:	Background: Heme Oxygenase 1 (HO-1) is an enzyme in endoplasmic reticulum that belongs to the heme oxygenase family. HO-1 cleaves the heme ring at the alpha methene bridge to form
	Biliverdin. Biliverdin is subsequently converted to Bilirubin by Biliverdin reductase. In
	physiological state, the highest activity of HO-1 is found in the spleen, where senescent

Target Details

erythrocytes are sequestrated and destroyed. HO-1 activity is highly inducible by its substrate heme and by various non-heme substances such as heavy metals, bromobenzene, endotoxin, oxidizing agents and UVA. HO-1 is involved in the regulation of cardiovascular function and response to a variety of stressors. Defects in HO-1 are the cause of Heme Oxygenase 1 deficiency, resulting in marked erythrocyte fragmentation and intravascular hemolysis, coagulation abnormalities, endothelial damage, and iron deposition in renal and hepatic tissues. Synonym: Heme Oxygenase 1, HO-1, HMOX1, HO, HO1

Molecular Weight: 29.9 kDa

UniProt: P09601

Pathways: Transition Metal Ion Homeostasis, Regulation of Leukocyte Mediated Immunity, Positive Regulation of Immune Effector Process, Production of Molecular Mediator of Immune

Response, SARS-CoV-2 Protein Interactome

Application Details

Restrictions: For Research Use only

Handling

Format:	Frozen, Liquid
Buffer:	Supplied as a 0.2 µm filtered solution of 20 mM PB, 150 mM NaCl, 1 mM EDTA, pH 7.4.
Storage:	-20 °C
Storage Comment:	Store at < -20°C, stable for 6 months. Please minimize freeze-thaw cycles.