

Datasheet for ABIN7566429

Recombinant anti-ISM1 antibody

Overview

Quantity:	100 μg
Target:	ISM1
Reactivity:	Human, Mouse
Host:	Mouse
Antibody Type:	Recombinant Antibody
Clonality:	Monoclonal
Conjugate:	This ISM1 antibody is un-conjugated
Application:	Western Blotting (WB), ELISA
Product Details	
Purpose:	anti-Isthmin-1, mAb (rec.) (Giusepi-1-4)
Immunogen:	Recombinant human Isthmin-1.
Clone:	Giusepi-1-4
Isotype:	IgG2b lambda

Characteristics: Recombinant Antibody. Recognizes human and mouse Isthmin-1. Isotype: Mouse

IgG2blambda. Immunogen: Recombinant human Isthmin-1. Applications: ELISA, WB. Liquid. In

PBS and 0.02 % Proclin-300. Isthmin-1 (ISM1) was first identified as a gene expressed in the Xenopus midbrain hind brain organizer called isthmus, with a proposed role during early brain development. Isthmin-1 encodes a predicted ~50- kDa protein containing a signal peptide, a thrombospondin domain and an adhesion-associated domain. Isthmin-1 is important for embryonic and postnatal development. Growing evidence has shown that aberrant expression

of Isthmin-1 can also affect the biological behavior of cancer. The Ism1 gene is conserved in mice and humans. A recent study showed that Isthmin-1 is an adipokine that induces glucose uptake in human and mouse adipocytes. Isthmin-1 is secreted by mature adipocytes and triggers a signaling cascade similar to that of insulin, regulating glucose uptake while suppressing lipid accumulation. Recombinant Isthmin-1 or overexpression of Isthmin-1 causes a robust increase in GLUT4-dependent glucose uptake in cultured primary murine and immortalized human adipocytes as well as in primary human muscle cells and prevents insulin resistance and hepatic steatosis in a diet-induced obesity mouse model. Ablation of Isthmin-1 causes glucose intolerance and impaired insulin-stimulated adipocyte glucose uptake. Isthmin-1 suppresses de novo lipogenesis and increases protein synthesis in hepatocytes whereas Isthmin-1 knockdown in adipocytes reduces glucose uptake and insulin-dependent phosphorylation of protein kinase AKT at serine residue 473 (p-AKTSer473). Isthmin-1 signaling is dependent on PI3K and shares downstream phosphorylation targets with insulin signaling, such as p-AKTSer473, p-AKTThr308, p-ERK1/2Thr202/Tyr204 and p-S6Ser235/236. Isthmin-1 does not seem to act through the insulin receptor or the insulin-like growth factor 1 receptor, it is most likely to signal through another, yet-to-be-identified, receptor tyrosine kinase. Isthmin-1 (ISM1) was first identified as a gene expressed in the Xenopus midbrain hind brain organizer called isthmus, with a proposed role during early brain development. Isthmin-1 encodes a predicted ~50- kDa protein containing a signal peptide, a thrombospondin domain and an adhesion-associated domain. Isthmin-1 is important for embryonic and postnatal development. Growing evidence has shown that aberrant expression of Isthmin-1 can also affect the biological behavior of cancer. The Ism1 gene is conserved in mice and humans. A recent study showed that Isthmin-1 is an adipokine that induces glucose uptake in human and mouse adipocytes. Isthmin-1 is secreted by mature adipocytes and triggers a signaling cascade similar to that of insulin, regulating glucose uptake while suppressing lipid accumulation. Recombinant Isthmin-1 or overexpression of Isthmin-1 causes a robust increase in GLUT4-dependent glucose uptake in cultured primary murine and immortalized human adipocytes as well as in primary human muscle cells and prevents insulin resistance and hepatic steatosis in a diet-induced obesity mouse model. Ablation of Isthmin-1 causes glucose intolerance and impaired insulin-stimulated adipocyte glucose uptake. Isthmin-1 suppresses de novo lipogenesis and increases protein synthesis in hepatocytes whereas Isthmin-1 knockdown in adipocytes reduces glucose uptake and insulin-dependent phosphorylation of protein kinase AKT at serine residue 473 (p-AKTSer473). Isthmin-1 signaling is dependent on PI3K and shares downstream phosphorylation targets with insulin signaling, such as p-AKTSer473, p-AKTThr308, p-ERK1/2Thr202/Tyr204 and p-S6Ser235/236. Isthmin-1 does not seem to act through the insulin receptor or the insulin-like growth factor 1 receptor, it is most likely to signal

Product Details

Storage Comment:

Product Details	
	through another, yet-to-be-identified, receptor tyrosine kinase.
Purification:	Puified
Purity:	>95 % (SDS-PAGE)
Target Details	
Target:	ISM1
Alternative Name:	Isthmin-1 (ISM1 Products)
Application Details	
Application Notes:	Optimal working dilution should be determined by the investigator.
Application Notes: Restrictions:	Optimal working dilution should be determined by the investigator. For Research Use only
Restrictions:	
Restrictions: Handling	For Research Use only
Restrictions: Handling Format:	For Research Use only Liquid
Restrictions: Handling Format: Concentration:	For Research Use only Liquid 1 mg/mL

+4°C