Datasheet for ABIN7596923 # Prokineticin Receptor 2 Protein (PROKR2) (DYKDDDDK Tag,Strep Tag) Go to Product page | _ | | | | | | |---|---|---|----|----|---| | | W | 0 | rv | 10 | W | | Quantity: | 10 μg | |-------------------------------|--| | Target: | Prokineticin Receptor 2 (PROKR2) | | Origin: | Human | | Source: | HEK-293 Cells | | Protein Type: | Synthetic Nanodisc | | Purification tag / Conjugate: | This Prokineticin Receptor 2 protein is labelled with DYKDDDDK Tag, Strep Tag. | | Application: | Immunogen (Imm), ELISA, Surface Plasmon Resonance (SPR), Phage Display (PhD), Cryogenic electron microscopy (cryo-EM) | | Product Details | | | Purpose: | Human PKR2-Strep full length protein-synthetic nanodisc | | Target Details | | | Target: | Prokineticin Receptor 2 (PROKR2) | | Alternative Name: | PKR2 (PROKR2 Products) | | Background: | GPR73L1, GPR73b, GPRg2, HH3, KAL3, PKR2, dJ680N4.3 Prokineticins are secreted proteins that can promote angiogenesis and induce strong gastrointestinal smooth muscle contraction. The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins. The encoded protein is similar in sequence to GPR73, another G protein-coupled receptor for prokineticins. [provided by RefSeq, Jul 2008] | ## **Target Details** | Molecular Weight: | The human full length PKR2-Strep protein has a MW of 44 kDa | | |-------------------|--|--| | UniProt: | Q8NFJ6 | | | Pathways: | Hedgehog Signaling, EGFR Signaling Pathway, Neurotrophin Signaling Pathway, Myometrial Relaxation and Contraction, G-protein mediated Events, Interaction of EGFR with phospholipase C-gamma | | ### **Application Details** | Application Detail | S | |--------------------|--| | Comment: | Advantages: | | | Highly purified membrane proteins | | | High solubility in aqueous solutions | | | High stability | | | Proteins are in a native membrane environment and remain biologically active | | | No detergent and can be used for cell-based assays | | | No MSP backbone proteins | | | Mammalian cell expression system ensures post-translational modifications | | Restrictions: | For Research Use only | ## Handling | Format: | Lyophilized | |------------------|--| | Buffer: | Solubilization buffer (20 mM Tris-HCl, 150 mM NaCl, pH 8.0). Normally 5% – 8% trehalose is added as protectants before lyophilization. | | Storage: | -20 °C,-80 °C | | Storage Comment: | Store at -20°C to -80°C for 12 months in lyophilized form. After reconstitution, if not intended for use within a month, aliquot and store at -80°C (Avoid repeated freezing and thawing). Lyophilized proteins are shipped at ambient temperature. | | Expiry Date: | 12 months |