antibodies - online.com

anti-MSH3 antibody (AA 136-349)

Images

Publications

\sim			
	$ \backslash / \cap$	r\/I	$\triangle V$

Quantity:	50 μg	
Target:	MSH3	
Binding Specificity:	AA 136-349	
Reactivity:	Human	
Host:	Mouse	
Clonality:	Monoclonal	
Conjugate:	This MSH3 antibody is un-conjugated	
Application:	Western Blotting (WB), Immunofluorescence (IF)	

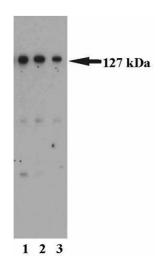
Product Details

Immunogen:	Human MSH3 aa. 136-349	
Clone:	52-MSH3	
Isotype:	lgG1	
Characteristics:	1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.	
	2. Source of all serum proteins is from USDA inspected abattoirs located in the United States.	
	3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide	
	compounds in running water before discarding to avoid accumulation of potentially explosive	
	deposits in plumbing.	
	4. Please refer to us for technical protocols.	
Purification:	The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity	
	chromatography.	

Target Details

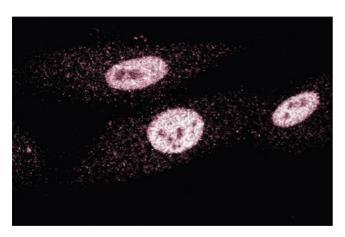
Target:	MSH3		
Alternative Name:	MSH3 (MSH3 Products)		
Background:	Bacterial mismatch DNA repair involves the MutL, MutH, and MutS proteins, which forms a		
	complex that mediates excision repair. Mutations in or deficiencies of any of these proteins		
	results in a mutator phenotype that is characterized by genetic instability. Human homologs of		
	MutS include MSH2, MSH3, and MSH6. MSH2 forms heterodimers with MSH6 (hMutSalpha) or		
	MSH3 (hMutSbeta) that specifically bind single-mispaired nucleotides and a subset of insertion		
	deletion mismatches. In addition, these heterodimers have intrinsic ATPase activity that is		
	regulated by mismatch binding. ADP-bound heterodimers bind mismatched nucleotides, while		
	ATP-bound heterodimers do not. The role of MSH3 in genetic stability in human cells in unclear.		
	However, MSH3 and MSH6 share roles in the control of mutation rates. Both participate in		
	repair of replication errors containing base-base mismatches or 1-4 extra bases. The MSH3		
	gene is located upstream of the dihydrofolate reductase (DHFR) gene and is expressed at low		
	levels in a variety of human tissues. Thus, MSH3 is a component of an adenosine nucleotide-		
	regulated molecular switch whose activity is essential for classical nucleotide mismatch repair.		
Molecular Weight:	127 kDa		
Pathways:	DNA Damage Repair, Production of Molecular Mediator of Immune Response		
Application Details			
Comment:	Related Products: ABIN967389, ABIN968535		
Restrictions:	For Research Use only		
Handling			
Format:	Liquid		
Concentration:	250 μg/mL		
Buffer:	Aqueous buffered solution containing BSA, glycerol, and ≤0.09 % sodium azide.		
Preservative:	Sodium azide		
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which		
	should be handled by trained staff only.		
Storage:	-20 °C		
Storage Comment:	Store undiluted at -20°C.		

Product cited in:


Wilson, Guerrette, Fishel: "Dissociation of mismatch recognition and ATPase activity by hMSH2-hMSH3." in: **The Journal of biological chemistry**, Vol. 274, Issue 31, pp. 21659-64, (1999) (PubMed).

Umar, Risinger, Glaab, Tindall, Barrett, Kunkel: "Functional overlap in mismatch repair by human MSH3 and MSH6." in: **Genetics**, Vol. 148, Issue 4, pp. 1637-46, (1998) (PubMed).

Watanabe, Ikejima, Suzuki, Shimada: "Genomic organization and expression of the human MSH3 gene." in: **Genomics**, Vol. 31, Issue 3, pp. 311-8, (1997) (PubMed).


New, Liu, Crouse: "The yeast gene MSH3 defines a new class of eukaryotic MutS homologues." in: **Molecular & general genetics : MGG**, Vol. 239, Issue 1-2, pp. 97-108, (1993) (PubMed).

Images

Western Blotting

Image 1. Western blot analysis of MSH3 on a HeLa cell lysate (Human cervical epitheloid carcinoma, ATCC CCL-2). 2 μ g/mL (lane 1), 1 μ g/mL (lane 2) and 0.5 μ g/mL (lane 3) of the mouse anti-human MSH3 antibody were used.

Immunofluorescence

Image 2. Immunofluorescence staining of human fibroblasts.

Image 3.

