antibodies -online.com

anti-MAPK11 antibody (AA 251-363)

Image

Publications

Overview

Quantity:	100 μL
Target:	MAPK11
Binding Specificity:	AA 251-363
Reactivity:	Human
Host:	Mouse
Clonality:	Monoclonal
Application:	Western Blotting (WB), ELISA

Product Details

Immunogen:	Purified recombinant fragment of MAPK11 (aa251-363) expressed in E. coli.
Clone:	4H6H6
Isotype:	lgG1
Purification:	purified

Target Details

Target:	MAPK11
Alternative Name:	MAPK11 (MAPK11 Products)
Background:	Description: Mitogen-activated protein kinase 11. The protein encoded by this gene is a member
	of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical
	signals, and are involved in a wide variety of cellular processes such as proliferation,
	differentiation, transcription regulation, and development. This kinase is most closely related to

Target Details

p38 MAP kinase, both of which can be activated by proinflammatory cytokines and environmental stress. This kinase is activated through its phosphorylation by MAP kinase kinases (MKKs), preferably by MKK6. Transcription factor ATF2/CREB2 has been shown to be a substrate of this kinase.

Aliases: MAPK11

Gene ID: 5600

HGNC: 5600

Pathways: MAPK Signaling, Neurotrophin Signaling Pathway, Activation of Innate immune Response,

 $Response\ to\ Water\ Deprivation,\ Regulation\ of\ Muscle\ Cell\ Differentiation,\ ER-Nucleus\ Signaling,$

Hepatitis C, Toll-Like Receptors Cascades, Signaling Events mediated by VEGFR1 and VEGFR2,

Thromboxane A2 Receptor Signaling, BCR Signaling, S100 Proteins

Application Details

Application Notes: ELISA: 1:10000, WB: 1:500 - 1:2000

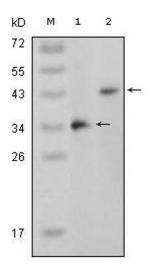
4°C, -20°C for long term storage

Restrictions: For Research Use only

Handling

Format:	Liquid
Buffer:	Ascitic fluid containing 0.03 % sodium azide.
Preservative:	Sodium azide
Precaution of Use:	This product contains Sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only.
Storage:	4 °C/-20 °C

Publications


Storage Comment:

Product cited in:

Durkin, Guo, Fryrear, Mihaylova, Gupta, Belgnaoui, Haoudi, Kupfer, Semmes: "HTLV-1 Tax oncoprotein subverts the cellular DNA damage response via binding to DNA-dependent protein kinase." in: **The Journal of biological chemistry**, Vol. 283, Issue 52, pp. 36311-20, (2008) (PubMed).

Huston, Lynch, Mohamed, Collins, Hill, MacLeod, Krause, Baillie, Houslay: "EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation." in: **Proceedings of the National Academy of Sciences of the United States of America**, Vol. 105, Issue 35, pp. 12791-6, (2008) (PubMed).

Images

Western Blotting

Image 1. Western blot analysis using MAPK11 mouse mAb against truncated MAPK11 recombinant protein (1) and full-length MAPK11 (aa1-363)-pcDNA3.1 transfected CHO-K1 cell lysate (2).